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Abstract—Industrial safety gears such as hardhats, vests,
gloves and goggles are vital in safety of workers. With the
advancement of vision technologies, most industries are moving
towards automatic safety monitoring systems for its enforcement.
However, most of the industrial safety monitoring systems are
plagued by the following problems. To begin with, object detec-
tion which is the principal component of this system suffers from
the problem of false detections and missed detections which are
extremely costly resulting in wrong safety monitoring alerts and
safety hazards. Further, while video object detection has seen a
large traction through ImagenetDet and MOT17Det challenges,
to the best of our knowledge there is no work till date in the
context of industrial safety. Finally, unlike existing areas of object
detection where there is the availability of large datasets, best
of existing research works in detecting industrial safety gears
is restricted to mostly hardhats due to lack of large datasets.
In this work, we address these previously mentioned challenges
by presenting a unified industrial safety system. As part of
this developed system, we firstly introduce safety gear detection
dataset consisting of 5k images with the previously mentioned
classes of safety gears and present exhaustive benchmark on
state-of-the-art single frame object detection. Secondly, to ad-
dress wrong/missed detections we propose to exploit temporal
information from contiguous frames by conditioning the object
detection in the current frame on results of re-identification of
objects computed in prior frames. Finally, we conduct extensive
experiments using the developed Re-ID conditioned object de-
tection system with various state-of-the-art object detectors to
show that the proposed system produces mAP of 85%, 87%,
92% and 78% with average improvements of 5% mAP across
the previously mentioned safety gears under complex conditions
of illumination, posture and occlusions.

Index Terms—Object Detection, Safety Gear Detection, Person
Re-Identification, Convolution Neural Networks

I. INTRODUCTION

Industries such as manufacturing, construction, etc. are very
essential and an integral part of infrastructure development
which gives a tremendous boost to a countrys economy. The
construction industry has registered enormous growth world-
wide in recent years. Although the development of technology
is rapid in most of the sectors, construction work is still labor-
intensive, high-risk with workers working on complex tasks
requiring high-intensity operations [1], which always leads to
hazards.

According to the most recent United States’ Bureau of
Labor Statistics, the number of fatalities in the US has gradu-
ally increased by 26% between 2011 and 2016 [2]. Similarly,
according to the UK Health and Safety Executive (HSE), 38
construction workers suffered fatal injuries in Great Britain
between April 2014 and March 2015, while this figure rose
to 45 during the same period the following year. Finally, in
India [3], nearly 48,000 workers die in the country due to
occupational accidents out of which 24.2% is recorded in the
construction industry.

All these statistics put forth the need for construction safety
and risk assessment technologies. Multiple types of injuries
occur in construction ranging from injuries due to falls, falling
material and objects, electrical hazards, etc. with each having
consequences that are more serious than the other. Most of
these accidents involving eyes, legs, feet, and toes are often
fatal [4]. Further many heads and neck injuries are caused
by falling from a height or being struck by vehicles and
other moving plants and equipment. From 2003 to 2010, 2210
construction workers in the United States died as a result of
traumatic brain injuries [5], [6], accounting for 24% of the
total number of deaths from construction accidents.

Wearing safety gear such as hardhat, safety vests, gloves,
and goggles is an effective protective measure for minimizing
the risk of serious injuries. In construction accidents, the
hardhats protect workers by resisting penetration by objects,
absorbing shock from direct blows to the head by objects
and reducing electrical shock hazards. Safety goggles prevent
exposure of eyes to molds, fungi or rodent droppings. Safety
gloves prevent burns and electrical shocks. Further, the Bureau
of Indian standards recommends wearing hardhats, goggles,
and gloves in typical construction environments when there is
a potential for a head injury from impacts, falling or flying
objects, or electrical shock [8]. Despite the vital role of these
safety gears in protecting life, it is well-known that the injuries
still occur due to lack of wearing any protective equipment [7].

An automated industrial safety monitoring system helps to
improve the safety compliance of construction workers by
ensuring safety gears are appropriately worn. It is well known
that traditional safety management methods, such as risk
analysis and safety training, have seldom effect on construction
safety [9]. An automatic construction surveillance system will
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be helpful in real-time monitoring which in turn improves
worker safety and reduces labor costs. However, most of
the industrial safety monitoring systems are plagued by the
following open problems.

• To begin with, object detection which is the principal
component of this system, which is used for detecting
safety gears suffers from the problem of false/missed
detections and miss classifications which are extremely
costly resulting in wrong safety monitoring alerts and
safety hazards [10].

• Secondly, video stream based processing to reduce de-
tection errors is yet to be adapted for industrial safety,
despite main stream adaptation in general AI tasks [11],
[12].

• Finally, unlike existing areas of computer vision, where
there is the availability of large public datasets, best
of existing research works in detecting industrial safety
gears is restricted to mostly hardhats due to lack of large
datasets.

With previously mentioned points in mind, through this
work we make the following contributions:

• Firstly we introduce safety gear detection dataset consist-
ing of 5k images with annotations for four safety gears
including helmet, jacket, goggle and glove.

• Second, to address video level wrong/missed detections
we propose to exploit temporal information from contigu-
ous frames by propagating boxes through trackers.

• Thirdly, to address video level miss classification we
propose to condition class label of detected object in the
current frame based on the results of re-identification of
objects computed in prior frames. Such a conditioning
mechanism helps in propagation of class labels, thereby
reducing the miss classification. Further in this work, it’s
also supplemented with decoupled classification refine-
ment.

• Finally, we conduct extensive experiments to show that
the proposed system produces mAP of 85%, 87%, 92%
and 78% with average improvements of 5% mAP across
the previously mentioned safety gears under complex
conditions of illumination, posture and occlusions.

The rest of the paper is organized as follows. In section II we
present literature, foll wed by experimental setup, algorithm
and dataset used in section III. In section V we present various
experiments on the developed approach. Finally, in section
VII we conclude with discussion on work done and some
implications on possible future works.

II. RELATED WORKS

Computer Vision for Industrial Safety Systems: Large
number of works exist on computer vision based construction
safety monitoring with majority of works falling in detection
of hard hats and safety vests with Fang et al. [13] presenting
detailed study of Faster-RCNN for task of safety helmet
detection under various visual conditions. Son et al. [14] fo-
cusing on detection of Industrial workers with varying posture,

appearance and backgrounds using Faster RCNN, however
the approach is restricted to detection of non hard hat use
only. Fang et al. [15] presenting Improved faster-RCNN for
improving generalization of worker detection. Du et al. [16]
propose using facial features, motion and color information
of workers wearing same colored helmets and facing towards
camera, which reduces applicability of such a method in actual
scenarios and similar works are also proposed by Shrestha et
al. [17] which uses edge information. Multiple other works
are presented for hard helmet detection ranging from use of
Histogram of Oriented Gradient (HOG) with Circle Hough
Transform (CHT) [18], HOG feature template of a human
object , cascade classifiers [19] and color information [20]
While detecting hard hats has seen large body works there
are few works detecting safety vests, notable work include on
by Mosberger et al. [21] which proposes using combination
of segmentation, localization and classification to detecting
safety jackets. Then there are works by Park et al. [22] that
uses fluorescent color of safety vests by processing local color
histograms extracted from the regions of interest. In general,
most existing work focus on detecting either hard hats or safety
vests only. In our work, we extend to scope to four classes
of safety gears namely hard hats, vests, goggles and gloves
respectively.

Object Detection: Most of the recent work in object
detection has focused on single-frame images dominated by
Convolutional neural networks beginning with series of works
by Girshick et al. [24]–[26] which were famous for their high
accuracy and speed where they replaced scanning window
detectors such as Viola-Jones [27], with a region proposal
and classifier pipeline. Since 2015, Single Shot Detectors
[28]–[34] have taken over which replaced the proposal-plus-
classification paradigm with a regression formulation that
directly estimates a set of bounding boxes and class labels.
Both region proposal style detectors, and single shot detectors,
are fast and reasonably accurate.

When developing object detection algorithms for surveil-
lance situations, it is important to note that, the natural input is
video (stream of frames). However, most of the standard previ-
ously mentioned detectors treat each frame independently, and
simply process the input one frame at a time. There has been
a comparatively small amount of work on object detectors that
explicitly take a sequence of multiple frames as input. Under
this we two variants namely have box-based approaches [36]
and feature based approaches [35] which are as explained.

Box based approaches operate on the sequence of bounding-
boxes produced by object detectors applied independently to
multiple sequential frames. Most notable of the work in box-
based approaches include work by Han et al. [36] that replaces
standard Non-Maximal Suppression (NMS) with one that
incorporates bounding boxes from multiple frames. Followed
by works of Tripathi et al. [37] describe another box-level
technique that processes a sequence of object detector outputs
using a recurrent network to improve object predictions. Works
by Kang et al. [38], [39] use the output from a single-frame
detector to produce spatial-temporal Tubelet that are further



processed to generate improved box predictions. Similarly,
work of Lu et al. [40] use feature maps from a single-
frame detector within detected regions and pass these to a
recurrent network that outputs new bounding boxes and class
probabilities. All these approaches are related to another class
of box-level techniques known as tracking-by-detection [41]–
[43] where the basic idea is to associate detections across
the output of an object detector applied independently to
sequential single-frame images to create tracks that can be
used to remove false positives and restore missed detections.

Feature based approaches integrate features from multiple
frames, rather than independent application of detector like
box-based approach. Feature based approaches including most
initial work Zhu et al. [44] uses optical flow to warp feature
maps computed from two input frames into correspondence.
Following this, again [45] combine two orthogonal ideas with
a spatially adaptive feature computation to further improve
results. Another key work by Friechtenhofer et al. [46] uses
a deep network to combine detection and tracking to improve
object detection in videos. More recently, there are works
Broad et al. [47] that use recurrent layer for fusing features.

In the video object detection literature, there has been
significantly more work on box-level methods owing to its
natural sync with human thinking. As such in this work, we
focus on box based detectors. More specifically, in this work
we propose re-identification conditioned sequential detector
with tracker to handle problem of missed and incorrect detec-
tions. Furthermore, we address classification errors through
combination of decoupled classification refinement and re-
identification conditioned sequential detector.

III. DATASETS AND EXPERIMENTAL SETUP

A. Datasets

Since there is no off-the-shelf dataset available, a dataset
was created in internal setting under simulated conditions that
is typical across various industrial sites. The simulated workers
along with their safety gears were annotated to generate the
ground truth for training.
Data Collection: Videos were collected under following con-
ditions.

• Visual Range : Near and far range of objects up-to 20
feets.

• Illumination :Include frames of bright and dark illumi-
nation.

• Poses: Include varying poses for the worker under con-
sideration. See Figure 1.

Image annotation: For each of the worker in the image frame
we annotated following

• Bounding Boxes: For each worker wearing/not wearing
safety gear we annotated bounding boxes for the worker
and his/her head. This was used for training the DCR
based object detector used in the system (See section
III-B). All the annotation were done using Labelme [50]
tool.

• Classification labels: Further, for each of the bounding
box annotated worker we further annotate binary class
labels indicating presence or absence of the of Jacket and
Glove. Similarly, for each of the annotated head we create
two binary class labels indicated presence or absence of
helmet and goggle. Overall, we have two detections, with
two class label for each.

The final dataset statistics is as shown in Table III-A. We
separate the dataset into three splits of training, development
and test sets randomly, in the ratio of 80%:10%:10%. Sample
images and their ground truth annotations are as shown in
the figure 1.

B. Multistage Decoupled Classification Refinement (DCR)

Deep learning object detectors usually involve a backbone
network such as VGG or Resnet etc. that is trained on
large image classification datasets to yield scale-invariant
features. Following this, a localization branch is connected
to this backbone. This results in a conflict of covariance
and correlation, where correlated features are required for
classification and covariant features are needed for detection.
Alternatively, fine-tuning end-to-end will force the backbone
to gradually learn translation covariant feature, which might
potentially downgrade the performance of the classifier. As
such based on the works of Cheng et al. [48], we propose to
use a Multistage Decoupled Classification Refinement (DCR)
detector. Diagrammatic representation of the same is shown
in Figure 2 below.

For this work, we use three state-of-the-art object detection
models including RetinaNet, Faster-RCNN and Single Shot
Multibox Detector (SSD) with previous proposed modifica-
tion.

C. Evaluation Metric

1) Accuracy: We use PASCAL VOC mAP metric as the
measure of accuracy. More details of the same can be found
in [49].

2) Speed: In order to cater real time requirements, we
calculate the speed of our entire approach. The speed in our
case is calculated as the time taken for processing one image
as it goes to through our entire pipeline starting from input
to getting final detections and class labels. Since we calculate
the speed in GPU, the resultant values obtained are very fast.

3) Robustness: Robustness represents the degree of toler-
ance of an object detection method when applied to testing
various images. Industrial sites are usually in open outdoor en-
vironments and contain a large amount of workers, equipment
and material. Therefore, changes in weather, illumination,
individual postures, visual range and occlusions frequently
occur on industrial sites. These factors inevitably have a
significant impact on the visual features on such work sites.
A good algorithm should be robust to such changes and not
degrade significantly under varying conditions. Correctness
and speed in different situations are indicators reflecting the
robustness of the model.



Fig. 1. Example images from dataset showing varying poses, brightness, range and occlusion in workers with safety gears. Best viewed in color.

TABLE I
DATASET CHARACTERISTICS OF SAFETY GEAR DETECTION DATASET.

Categories No Values Total Instances Number of
FramesH J GL GO

Illumination 1 Bright 800 600 400 400 500
2 Dark 400 400 400 400 500

Posture
1 Standing 500 600 400 400 500
2 Bending 350 200 100 200 500
3 Sitting 300 100 150 50 500

Range
1 Small 200 150 200 300 500
2 Medium 150 100 50 50 500
3 Large 100 100 50 100 500

Occlusion
1 No occlusion 50 50 50 50 500
2 Partial Occlusion 50 50 50 50 500

IV. RE-ID CONDITIONED DETECTION ALGORITHM

A. Background

Given an continuous steam of video of frame It, t =
0, 1, ..N − 1, N,N + 1, .., T , our goal is to avoid missed
detection, wrong detections and miss classification across
the frames. Let Dt be the tracklet of frame t such that
Dt = {< Bt, Ct >} where Bt, Ct denotes its bounding boxes
and class label. A scheme widely adopted in previous work
[41]–[43] is sequential detection with tracking, outlined in
Algorithm 1.

Given a video frame It, an object detector for individual
images is first applied to produce per-frame detection result
Bt = DetectOnImage(It) where Bt denotes a set of bounding
boxes together with their corresponding category scores. Non-
maximum suppression is then applied to remove redundant
bounding boxes, resulting in Bt = NMS(Bt). Then the
tracking algorithm associates the existing tracklets Dt−1 to
the detection results Bt producing tracklets up to frame It
as Dt = AssociateTracklet(Dt−1, Bt) outputting {Bt}. Ad-
ditionally, Box propagation is applied, where detected boxes
in the existing tracklets Dt−1 are propagated to the current

frame, B
′

t = PropagateBoxKalman(Dt−1). The propagated
boxes are concatenated with the per-image detected boxes as
Bt = [B

′

t, Bt] which is again followed by non-maximum
suppression and are associated to the existing tracklets.

Algorithm 1: Sequential Detector with Tracker

Input: Video Frames {It}Tt=0

Output: : All boxes {Bt}Tt=0

Procedure:
B0 = DetectOnImage(I0)
Initialize the tracklets D0 from B0

for t = 1 to T
Bt = DetectOnImage(It)
B

′

t = PropagateBoxKalman(Dt−1)
Bt = [B

′

t, Bt] := Box Concatenation
Bt = NMS(Bt)
Dt = AssociateTracklet(Dt−1, Bt)

end for



Fig. 2. Decoupled Classification Refinement with Multistage Training based Detector. The classifier stage is repeated four time for each of the safety gear
classes.

B. Algorithm

Our target is to solve two problems of video level missed
& wrong detection and miss classification.

• Missed Detection: Missed detections are handled by
including boxes that are relevant, based on information
from prior frames and boxes of new detections

• Wrong Detection: Wrong detections are handled by
coupling multiframe detections through Re-Identification
a.k.a Re-Id Conditioning

• Miss Classification: Miss classification are handled by
propagating class labels. Further this is supplemented by
DCR detectors to avoid inherent network level classifica-
tion errors.

The revised re-identification conditioned detection algo-
rithm is as shown in Algorithm 2. Solution 1 is executed
by steps Mt = IOU(B

′

t, Bt) and Ot = [B
′

t, Bt] and So-
lution 2 is taken care by Nt = PersonReID(B

′

t, Bt) and
B

′

t = Mt and Nt or Ot.

V. EXPERIMENTS

Previously in section IV we presented the re-identification
conditioned detector with tracker algorithm. In this section,
we present detailed ablation study and results so obtained.
The analysis and finding are presented in three parts namely
i) Results across detectors ii) Results across various parameters
iii) Comparison across baselines and proposed algorithms iv)
Error source and pending problems.

A. Experiment 1: Baselines

To begin with we create exhaustive evaluation in the context
of worker safety gear detection using DCR detectors (section

Algorithm 2: Re-identification Conditioned Sequential
Detector with Tracker
Input: Video Frames {It}Tt=0

Output: : All boxes {Bt}Tt=0

Procedure:
B0 = DetectOnImage(I0)
Initialize the tracklets D0 from B0

for t = 1 to T
Bt = DetectOnImage(It)
B

′

t = PropagateBoxKalman(Dt−1)
Mt = IOU(B

′

t, Bt)
Nt = PersonReID(B

′

t, Bt)
Ot = [B

′

t, Bt]
B

′

t = Mt and Nt or Ot := Re-ID Conditioning
Bt = NMS(Bt)
Dt = AssociateTracklet(Dt−1, Bt)

end for

III-B) and sequential detector with tracker algorithm (Algo-
rithm 1), on the datasets discussed earlier in section III-A.
Firstly, we trained three DCR Detectors on the training sets,
with each of architectures tuned for various hyper parameters
such as learning rate etc. to ensure quicker convergence. The
results so obtained are as shown in Table II and III. The details
of analysis reveals following.

• Baseline v/s Proposed Approaches: Comparing the
baseline results in Table II with results obtained using
Algorithm 1 from Table III. From Table III we can see,
that sequential detectors does perform significantly better
than the baseline detectors, by a margin of 2% mAP.



Comparing Tables II and III, we can see that this is
mainly due to increase in results of conditions involving
occlusion and range. We will revisit analysis in upcoming
section (see section VI) for each conditions in section VI.

• Results across Detectors: As far as individual detectors
go, DCR-SSD overall performs significantly better than
both DCR-Faster-RCNN and DCR-RetinaNet for most of
the safety gears. More specifically DCR-SSD outperforms
DCR-RetinaNet for all the four safety gears across all
the conditions of illumination, posture, range and occlu-
sion. This is also true even in the case of DCR-SSD
with Algorithm II. DCR-SSD and DCR-Faster-RCNN
perform very similarly to DCR-Faster-RCNN across both
Tables II and III except DCR-Faster-RCNN performs
well across illumination and occlusion by average of 2%
mAP. Further this observation is true across Tables II
and III. We believe this is because of richer capacity
of region proposal network where during ROI pooling,
they retain information that is mostly dominated, which
in our case the detection themselves rather than the factor
such as illumination or occlusion. We leave more detailed
analysis of these results for future works.

• Errors: As far as source of errors, in individual safety
gears are concerned the insight so obtained from error
analysis was common across the all the detectors. For
Helmet, Jacket and Goggle the drop in mAP is mainly
due to classification error. However, for glove missed
detection error dominated more than the classification
error.

B. Experiment 2: Re-ID Conditioning

Having examined the baselines using different detector
alone and with algorithm 1, in this section we asses the perfor-
mance using proposed re-identification conditioned sequential
detection approach. As usual, use multistage DCR detectors
of Faster-RCNN, SSD and RetinaNet.

More specifically in this experiment, we modify the step of
concatenation of propagated boxes, in the original sequential
detection algorithm to include boxes that are relevant from
previous frames and the newly predicted boxes. We do this
in three stages, where we first detect boxes in the current
frame, next we find boxes relevant w.r.t previous frame through
Intersection-over-union. Following this, we do re-identification
of objects so obtained after IOU step to reduce classification
error. Since our core task is to detect if the safety gears are
worn, rather than 1-1 mapping of people between frames we
conjecture re-identification will significantly help in improving
results. Finally, we merge these re-identified boxes with newly
obtained detection for the current frame. Thus in the process,
we rectify both the classification labels and detected boxes if
any. The results so obtained are as shown in Table IV for all
the three detectors.

• Baseline v/s Proposed Approaches: Firstly comparing
Tables IV with IV and II, we see that the results are sig-
nificantly higher across all the conditions of illumination,
posture, range and occlusion.

• Results across Detectors: inline with observations from
section V-A we can see that DCR-SSD outperforms
DCR-RetinaNet across all the results and performs very
similar to DCR-Faster-RCNN. Further comparing Tables
IV,III and II we can see that mAP improves by average
of 10% for conditions involving range and occlusion,
which is as expected when detection is coupled with
tracking and re-identification. Also we can see, that Re-ID
conditioned DCR-SSD outperforms DCR-Faster-RCNN
for Helmet, Goggle and Re-ID Conditioned DCR-Faster-
RCNN outperforms DCR-SSD for Glove and Jacket by
average of 1%. Also, the results of gloves are very similar
across the detectors and across the Tables IV,III and II.
This is because, the detectors so trained seldom detects
gloves or gives wrong detection, as such leading to higher
error, compared to other safety gears.

• Errors: This is inline with, previously described obser-
vation.

VI. ABLATION STUDY

To evaluate the robustness of the developed system, in this
section we study impact of parameters such as illumination,
posture, range and occlusion on the overall performance across
the baselines and the proposed system.

A. Impact of Illumination

It is well known that typical industrial works are extremely
long and time consuming, thus requiring workers to work on
varying lighting conditions. This is true both in the case of
outdoor and indoor industrial workers. Thus the developed
method should be robust against lighting variations. Keeping
this mind, we evaluate robustness of our approach for varying
lighting conditions namely bright and dark conditions which
corresponds to morning and evening work time. The results
for the same are as shown in Table V across the baseline as
well as the proposed re-id conditioned detection algorithm.

From the Table V, we can make following observations:
• Results across Detectors: Among all the detectors with

various illumination DCR-SSD, produces top results for
Helmet and Goggle, while DCR-Faster-RCNN produces
best result for Jacket and Glove. DCR-Retina-Net pro-
duces results very close to that of rest.

• Results across the parameter: Results under bright
illumination is higher by an average mAP of 1% across
all the experiments. More specifically for the baseline
approach, Algorithm 1 and Algorithm 2 brighter results
are higher by 4%, 2% and 1% mAP respectively, which
shows that the proposed approach does improve results
with varying brightness conditions, where the detectors
do fail. Results for Glove safety gear, is same across
all the experiment with a values of 76% mAP in DCR-
RetinaNet. Finally, we can see that the net improvement
obtained for darker illumination (7% mAP) is higher than
that of bright illumination (4% mAP).

• Baseline v/s Proposed Approaches & Errors: Com-
paring results across baseline, algorithm 1 and algorithm



TABLE II
BASELINE PERFORMANCE (MAP@ THRESHOLD=0.55) USING VARIOUS DETECTORS. H:=HELMET, J:=JACKET,GL:=GLOVE,GO:=GOGGLE

Categories DCR-Faster-RCNN DCR-SSD DCR-RetinaNet
H J GO GL H J GO GL H J GO GL

Illumination 0.76 0.67 0.93 0.73 0.74 0.67 0.93 0.73 0.70 0.70 0.91 0.73
Posture 0.79 0.67 0.88 0.79 0.79 0.67 0.88 0.78 0.70 0.74 0.89 0.78
Range 0.74 0.67 0.87 0.75 0.74 0.64 0.87 0.77 0.67 0.67 0.87 0.77

Occlusion 0.77 0.65 0.90 0.75 0.75 0.64 0.90 0.74 0.68 0.68 0.9 0.74
Average 0.77 0.67 0.90 0.75 0.75 0.65 0.90 0.75 0.68 0.70 0.90 0.76

TABLE III
PERFORMANCE (MAP@ THRESHOLD=0.55) OF VARIOUS DETECTORS USING SEQUENTIAL DETECTOR WITH TRACKER.H:=HELMET,

J:=JACKET,GL:=GLOVE,GO:=GOGGLE

Categories DCR-Faster-RCNN DCR-SSD DCR-RetinaNet
H J GO GL H J GO GL H J GO GL

Illumination 0.76 0.67 0.93 0.73 0.74 0.67 0.93 0.73 0.7 0.7 0.91 0.76
Posture 0.79 0.67 0.88 0.79 0.79 0.67 0.88 0.78 0.7 0.74 0.89 0.79
Range 0.74 0.68 0.89 0.76 0.76 0.66 0.89 0.78 0.67 0.67 0.87 0.75

Occlusion 0.79 0.65 0.91 0.76 0.76 0.66 0.91 0.74 0.69 0.69 0.91 0.76
Average 0.77 0.67 0.90 0.76 0.76 0.67 0.90 0.76 0.69 0.70 0.90 0.77

TABLE IV
PERFORMANCE (MAP@ THRESHOLD=0.55) OF USING PROPOSED RE-ID CONDITIONED DETECTION ALGORITHM. H:=HELMET,

J:=JACKET,GL:=GLOVE,GO:=GOGGLE

Categories DCR-Faster-RCNN DCR-SSD DCR-RetinaNet
H J GO GL H J GO GL H J GO GL

Illumination 0.81 0.81 0.91 0.77 0.83 0.80 0.92 0.73 0.82 0.81 0.91 0.76
Posture 0.80 0.81 0.87 0.78 0.84 0.80 0.92 0.78 0.82 0.80 0.89 0.79
Range 0.86 0.8 0.89 0.77 0.87 0.78 0.89 0.78 0.81 0.78 0.87 0.75

Occlusion 0.87 0.81 0.91 0.77 0.87 0.81 0.91 0.74 0.83 0.79 0.91 0.76
Average 0.83 0.81 0.90 0.77 0.85 0.80 0.91 0.76 0.82 0.80 0.90 0.77

TABLE V
COMPARISON OF PERFORMANCE (MAP@ THRESHOLD=0.55) ACROSS APPROACHES WITH VARYING ILLUMINATION

Approch DCR-Faster-RCNN DCR-SSD DCR-RetinaNet
H J GO GL H J GO GL H J GO GL

Baseline
Bright 0.78 0.72 0.94 0.73 0.76 0.72 0.94 0.73 0.70 0.74 0.93 0.76
Dark 0.72 0.63 0.92 0.73 0.72 0.63 0.92 0.73 0.70 0.65 0.9 0.76

Average 0.76 0.67 0.93 0.73 0.74 0.67 0.93 0.73 0.7 0.7 0.91 0.76

Algorithm 1
Bright 0.78 0.72 0.9 0.76 0.76 0.72 0.93 0.73 0.7 0.7 0.91 0.76
Dark 0.72 0.63 0.9 0.76 0.76 0.63 0.92 0.73 0.69 0.69 0.9 0.76

Average 0.76 0.67 0.93 0.73 0.74 0.67 0.93 0.73 0.7 0.7 0.91 0.76

Algorithm 2
Bright 0.82 0.82 0.91 0.77 0.84 0.8 0.92 0.73 0.82 0.81 0.91 0.76
Dark 0.81 0.81 0.9 0.77 0.82 0.8 0.91 0.73 0.81 0.8 0.9 0.76

Average 0.81 0.81 0.91 0.77 0.83 0.8 0.92 0.73 0.82 0.81 0.91 0.76

2, we can see that an average improvement of 9% for
Helmet, 13% for Jacket and 3% for glove and goggle
showing a minor drop of 1%. We believe that the drop in
goggle’s performance is an outlier result due to kalman
filter parameters and leave further exploration of results
for future work.

B. Impact of Posture

Typically industrial work consists of large number of com-
plex tasks ranging from carrying bricks to bending bar etc.
thus worker constantly work in varying posture ranging from
sitting, standing and bending. To accommodate the same, we
collected dataset inline as shown from Table I. The dataset

is collected in way such that that all the three variations of
posture are present and each of the frame consists of two or
more postures simultaneously. We calculate results, through
manual analysis of each of the detections across categories to
obtain following insights.

• Baseline v/s Proposed Approaches & Errors: We
obtain net improvement of 1% and 14% mAP for Helmet
and Jacket classes, with a drop of 1% mAP for glove
and goggle. Also we don’t see any improvement for
Algorithm 1, when compared to baselines.

• Results across Detectors: Among all the detectors
with various posture conditions DCR-SSD, produces top



TABLE VI
COMPARISON OF PERFORMANCE (MAP@ THRESHOLD=0.55) ACROSS APPROACHES WITH VARYING POSTURE

Approch DCR-Faster-RCNN DCR-SSD DCR-RetinaNet
H J GO GL H J GO GL H J GO GL

Baseline

Standing 0.8 0.67 0.89 0.79 0.8 0.67 0.88 0.78 0.72 0.76 0.9 0.79
Bending 0.78 0.67 0.88 0.79 0.78 0.67 0.88 0.78 0.69 0.73 0.88 0.79
Sitting 0.78 0.67 0.88 0.79 0.78 0.67 0.88 0.78 0.69 0.73 0.88 0.79

Average 0.79 0.67 0.88 0.79 0.79 0.67 0.88 0.78 0.7 0.74 0.89 0.79

Algorithm 1

Standing 0.8 0.67 0.89 0.79 0.8 0.67 0.88 0.78 0.72 0.76 0.9 0.79
Bending 0.78 0.67 0.88 0.79 0.78 0.67 0.88 0.78 0.69 0.73 0.88 0.79
Sitting 0.78 0.67 0.88 0.79 0.78 0.67 0.88 0.78 0.69 0.73 0.88 0.79

Average 0.79 0.67 0.88 0.79 0.79 0.67 0.88 0.78 0.7 0.74 0.89 0.79

Algorithm 2

Average 0.8 0.82 0.87 0.78 0.84 0.8 0.92 0.78 0.84 0.81 0.9 0.79
Dark 0.79 0.81 0.87 0.78 0.84 0.8 0.92 0.78 0.81 0.8 0.89 0.79

Sitting 0.79 0.81 0.87 0.78 0.84 0.8 0.92 0.78 0.81 0.8 0.89 0.79
Average 0.8 0.81 0.87 0.78 0.84 0.8 0.92 0.78 0.82 0.8 0.89 0.79

results for Helmet and Goggle, while DCR-RetinaNet
produces best result for Jacket and Glove. DCR-Faster-
RCNN produces results very close to that of RetinaNet,
this is unlike the case of illumination. We believe this is
because of feature pyramids used as part of the DCR-
RetineNet architecture. However since, the net difference
being 1%, we leave such an analysis of impact of feature
pyramids on detecting varying sized objects to future
work.

• Results across the parameter: Among all the results
of varying posture, we see that results with standing
posture is higher than that of bending and sitting postures.
Further, we also see that results for bending and sitting
are similar to one another. Moreover, this trend is con-
sistent across all the algorithms and across the different
detectors. We also see that results of gloves is constant
across all the experiments.

C. Impact of Range

Generally in construction and industrial areas the cameras
are placed in variety of places. For example if the construction
is indoor then the camera is placed in very low level thereby
most objects in the scene including construction workers are
very close to one another. If its a open construction areas
there is a need for catering large visual ranges, especially
due to stochastic camera placements. These camera positions
significantly affect the performance of the developed method
due to relative quality of features so extracted. As such in our
case keeping these situations in mind, we present three cases
of small, medium and large where small is distance of object
from camera in range of 5-10ft distance , medium is in range
of 10-30ft and large consists of objects that are 40ft away from
the camera. In our case, based on this requirement we collected
dataset across two different area that allows for capturing
in such a setting. Example images are shown in Figure 1.
Experiments with these setting show following observations.

• Baseline v/s Proposed Approaches & Errors: Com-
pared to baseline, algorithm 1 and 2 improves results of
large range objects by 1% and 4% respectively. In general
we can see that the improvement obtained is directly
related to distance of object from the camera. We obtain a

average improvement of 13% mAP for Helmet, 12% mAP
for Jacket, 1% for goggles and gloves each respectively.

• Results across Detectors: Among all the detectors
with various posture conditions DCR-SSD, produces
top results for Helmet and Goggle, while DCR-Faster-
RCNN produces best result for Jacket and Glove. DCR-
RetinaNet produces results very close to that of rest.

• Results across varying parameters: The results of
frames with objects with large range is the least and
with the small range is the highest. This is consistent
across all the experiments. Finally, for objects with large
range, we can see that algorithm 2 produces the maximum
improvement in SSD with 8% mAP for helmet, 14% for
jacket, 2% and 3% each for glove and goggle respectively.

D. Impact of Occlusion

Most of the construction environments are densely popu-
lated with large number of worker working on various aspects
so involved. Further much of construction areas are filled
with multiple equipment’s. As such there is need of safety
monitoring system that is not susceptible to occlusions, which
is not the case of detectors, where most of them are susceptible
to occlusion leading to missed detections. As such we create
dataset to include occlusion and non-occluded workers. Such
an example is also shown in Figure 1. In line with previous
experiments, we evaluate across all the algorithms with all the
DCR detectors to obtain following observations.

• Results across Detectors: As far as detector’s perfor-
mance goes, DCR-Faster-RCNN obtains the best perfor-
mance for detecting objects with occlusion across the
baseline, algorithm 1 and algorithm 2. Followed by DCR-
SSD and DCR-RetinaNet.

• Results across varying parameters: For detecting non-
occluded objects the results of RCNN and SSD is similar
and RetinaNet is lower than both by average of 1% mAP.
For occluded objects, we see an net improvement of 17%
helmet and jacket, 0.02% for goggles and 0.01% for
glove respectively and non-occluded objects we see an
improvement of 6%, 14% and 1% for Helmet, Jacket and
Glove classes. Moreover, we see that the improvement



TABLE VII
COMPARISON OF PERFORMANCE (MAP@ THRESHOLD=0.55) ACROSS APPROACHES WITH VARYING RANGE

Approch DCR-Faster-RCNN DCR-SSD DCR-RetinaNet
H J GO GL H J GO GL H J GO GL

Baseline

Small 0.7 0.59 0.75 0.64 0.69 0.54 0.75 0.67 0.66 0.59 0.75 0.64
Medium 0.73 0.68 0.9 0.72 0.74 0.65 0.9 0.74 0.67 0.68 0.92 0.72

Large 0.77 0.78 0.96 0.87 0.77 0.78 0.96 0.87 0.67 0.78 0.95 0.87
Average 0.74 0.67 0.87 0.75 0.74 0.64 0.87 0.77 0.67 0.67 0.87 0.75

Algorithm 1

Small 0.7 0.59 0.77 0.66 0.72 0.56 0.77 0.7 0.66 0.59 0.75 0.64
Medium 0.73 0.7 0.92 0.74 0.76 0.65 0.92 0.74 0.67 0.68 0.92 0.72

Large 0.77 0.77 0.98 0.87 0.78 0.78 0.98 0.89 0.67 0.78 0.95 0.87
Average 0.74 0.68 0.89 0.76 0.76 0.66 0.89 0.78 0.67 0.67 0.87 0.75

Algorithm 2

Small 0.77 0.69 0.77 0.69 0.77 0.68 0.77 0.7 0.69 0.67 0.75 0.64
Medium 0.88 0.77 0.92 0.75 0.88 0.77 0.92 0.75 0.79 0.75 0.92 0.72

Large 0.9 0.92 0.98 0.87 0.91 0.87 0.98 0.89 0.89 0.92 0.95 0.87
Average 0.86 0.8 0.89 0.77 0.87 0.78 0.89 0.78 0.81 0.78 0.87 0.75

obtained with occlusion is higher than that of objects
without occlusion.

VII. DISCUSSION AND CONCLUSION

In this work, we present our approach of re-id conditioned
detector for safety gear detection. which we began by creating
a large dataset of 5k images with varying characteristics as
shown in section I. We then created a large scale benchmark in
section V-A using DCR detection from section III-B, where we
obtained lower results due missed detection and wrong classi-
fication. To mitigate this we proposed an extension of typical
sequential detector that uses re-identification information from
multiple frames through tracker for improving detection and
reducing miss classification in section 2. We investigated the
proposed approaches with multiple experiments where we first
created benchmarks with DCR approaches and sequential de-
tectors without re-identification. Following this we did a broad
evaluation keeping robustness of the detectors for various
conditions in mind. We first begin with understanding impact
of illumination in section VI-A to cater usage of developed
system across different environments, where we saw that the
proposed approach gives average improvement of 9% for
Helmet, 13% for Jacket, 3% for glove with goggle showing a
minor drop of 1%. We also saw more improvement in case of
darker illumination. Following this in section VI-B we verified
performance improvement for various postures to see that the
net improvement is significantly lower for bending and sitting
postures. We also investigated impact of range in section
VI-C and impact of occlusion in section VI-D to see that the
proposed approach improves the results in these cases as well.
Further across all the experiments we see improvements when
using proposed approach and limited to no improvement when
using baseline and Agorithm 1. At the same time, we can see
that results for Faster-RCNN and SSD are quite similar across
the experiments leading to choice of using the said approach
as needed. While one would argue, that Faster-RCNN alone
is sufficient we think that the proposed approach with SSD
has better memory and performance. Overall we addressed the
issue of missed and wrong detections produced by detectors
with re-identification conditioned detector.

While we addressed the re-identification conditioned detec-
tor, there are multiple result which we didn’t explore in details.
To begin with, in Table V we didn’t analyze in detail the source
behind the drop of performance for goggles and in Table
VI we conjectured higher performance of RetinaNet due to
feature pyramids, which need further experimentation. Further
across all the experiments, gloves had the least results owing to
wrong detection, which needs to be addressed. Further, instead
of DCR based detectors, we can explore cascaded detectors
which are robust to various environmental changes.

REFERENCES

[1] Schneider, Steffen and Pam Susi. Ergonomics and construction: a review
of potential hazards in new construction. American Industrial Hygiene
Association journal 55 7 (1994): 635-49 .

[2] Bureau of Labor Statistics, Construction, NAICS 23, (2017).
[3] 48,000 die due to occupational accidents yearly: Study, The times of

India, 2017. In https://timesofindia.indiatimes.com/business/india-
business/48000-die-due-to-occupational-accidents-yearly-
study/articleshow/61725283.cms

[4] Jeong, B.Y. (1998). Occupational deaths and injuries in the construction
industry. Applied ergonomics, 29 5, 355-60 .

[5] Konda, S., Tiesman, H.M., Reichard, A.A. (2016). Fatal traumatic brain
injuries in the construction industry, 2003-2010. American journal of
industrial medicine, 59 3, 212-20.

[6] Colantonio, A., McVittie, D., Lewko, J. H. Yin, J. Traumatic brain
injuries in the construction industry. Brain injury 23 11, 873-8 (2009).

[7] Dolan, E. Kriz, P. K. Protective Equipment, (2017).
[8] AERB SAFETY GUIDELINES, PERSONAL PROTECTIVE EQUIP-

MENT , Bureau of Indian Standards. In https://tinyurl.com/y4xmwthh
[9] Naticchia, B., Vaccarini, M. Carbonari, A. A monitoring system for

real-time interference control on large construction sites. Automation in
Construction 29, 148-160 (2013).

[10] Cai, Z., Vasconcelos, N. (2018). Cascade R-CNN: Delving Into High
Quality Object Detection. 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 6154-6162.

[11] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg and Li Fei-Fei. ImageNet Large
Scale Visual Recognition Challenge. IJCV, 2015.

[12] Leal-Taix, L., Milan, A., Reid, I.D., Roth, S., Schindler, K. (2015).
MOTChallenge 2015: Towards a Benchmark for Multi-Target Tracking.
ArXiv, abs/1504.01942.

[13] Qi Fang, Heng Li, Xiaochun Luo, Lieyun Ding, Hanbin Luo, Timothy
M. Rose, Wangpeng An, Detecting non-hardhat-use by a deep learning
method from far-field surveillance videos, Automation in Construction,
Volume 85, 2018, Pages 1-9

[14] Detection of construction workers under varying poses and changing
background in image sequences via very deep residual networks Hyojoo
Son, Hyunchul Choi, Hyeonwoo Seong, Changwan Kim Pages 27-38,
Automation in Construction 99, 27 (2019).



TABLE VIII
COMPARISON OF PERFORMANCE (MAP@ THRESHOLD=0.55) ACROSS APPROACHES WITH VARYING OCCLUSION

Approch DCR-Faster-RCNN DCR-SSD DCR-RetinaNet
H J GO GL H J GO GL H J GO GL

Baseline
Occlusion 0.72 0.61 0.82 0.69 0.67 0.61 0.82 0.69 0.62 0.62 0.82 0.69

No-Occlusion 0.83 0.68 0.96 0.8 0.83 0.68 0.96 0.8 0.74 0.7 0.96 0.8
Average 0.77 0.64 0.9 0.75 0.75 0.64 0.9 0.74 0.68 0.68 0.9 0.75

Algorithm 1
Occlusion 0.76 0.62 0.84 0.69 0.68 0.62 0.84 0.69 0.62 0.63 0.84 0.69

No-Occlusion 0.84 0.68 0.96 0.81 0.84 0.68 0.96 0.8 0.76 0.71 0.96 0.81
Average 0.79 0.65 0.91 0.76 0.76 0.66 0.91 0.74 0.69 0.69 0.91 0.76

Algorithm 2
Occlusion 0.86 0.79 0.84 0.72 0.87 0.79 0.84 0.69 0.81 0.77 0.84 0.69

No-Occlusion 0.88 0.84 0.96 0.82 0.87 0.84 0.96 0.8 0.84 0.82 0.96 0.81
Average 0.87 0.81 0.91 0.77 0.87 0.81 0.91 0.74 0.83 0.79 0.91 0.76

[15] Fang W., Ding L., Zhong B., Love P.E., Luo H. Automated detection of
workers and heavy equipment on construction sites: A convolutional
neural network approach. Adv. Eng. Inform. 2018;37:139149. doi:
10.1016/j.aei.2018.05.003

[16] S. Du, M. Shehata, and W. Badawy, Hard hat detection in video
sequences based on face features, motion and color information, 3rd
International Conference on Computer Research and Development, 2011

[17] Hard-Hat Detection for Construction Safety Visualization Kishor
Shrestha, Pramen P. Shrestha,Dinesh Bajracharya and Evangelos A.
Yfantis, Journal of Construction Engineering, 2015

[18] Automatic Detection of Helmet Uses for Construction Safety,
IEEE/WIC/ACM International Conference on Web Intelligence Work-
shops,2016

[19] Z. Zhu, M.W. Park, and N. Elsafty, Automated monitoring of hardhats
wearing for onsite safety enhancement,International Construction Spe-
cialty Conference of the Canadian Society for Civil Engineering (ICSC),
2015.

[20] Automated Hardhat Detection for Construction Safety Applications BE
Mneymneh, M Abbas, H Khoury Procedia Engineering 196, 895-902

[21] M.W. Park, N. Elsafty, and Z. Zhu, Hardhat-Wearing Detection for En-
hancing On-Site Safety of Construction workers, Journal of Construction
Engineering and Management 141, 04015024 (2015).

[22] R. Mosberger, H. Andreasson, and A. Lilienthal, Sensors 14, A Cus-
tomized Vision System for Tracking Humans Wearing Reflective Safety
Clothing from Industrial Vehicles and Machinery, 17952 (2014).

[23] M.-W. Park and I. Brilakis, Construction worker detection in video
frames for initializing vision trackers, Automation in Construction,
(2012).

[24] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich
feature hierarchies for accurate object detection and semantic segmenta-
tion. In Proceedings of the Conference on Computer Vision and Pattern
Recognition, pages 580587, 2014.

[25] Ross Girshick. Fast r-cnn. In Proceedings of the International Conference
on Computer Vision and Pattern Recognition (CVPR), pages 14401448,
2015.

[26] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-
CNN: Towards realtime object detection with region proposal networks.
In Advances in Neural Information Processing Systems, pages 9199,
2015.

[27] Paul Viola and Michael Jones. Robust real-time face detection. Interna-
tional Journal of Computer Vision, 57(2):137154, 2004.

[28] Pierre Sermanet, David Eigen, Xiang Zhang, Michal Mathieu, Robert
Fergus, and Yann Lecun. Overfeat: Integrated recognition, localization
and detection using convolutional networks. In Proceedings of the
International Conference on Learning Representations (ICLR), April
2014.

[29] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
779788, 2016.

[30] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, ChengYang Fu, and Alexander C Berg. Ssd: Single shot multibox
detector. In European Conference on Computer Vision, pages 2137.
Springer, 2016.

[31] Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017.

[32] Cheng-Yang Fu, Wei Liu, Ananth Ranga, Ambrish Tyagi, and
Alexander C Berg. DSSD : Deconvolutional Single Shot Detector.
arXiv:1701.06659, 2017.

[33] Yi Li, Kaiming He, Jian Sun, et al. R-FCN: Object detection via region-
based fully convolutional networks. In Advances in Neural Information
Processing Systems, pages 379387, 2016

[34] Bichen Wu, Forrest Iandola, Peter H. Jin, and Kurt Keutzer. SqueezeDet:
Unified, Small, Low Power Fully Convolutional Neural Networks for
Real-Time Object Detection for Autonomous Driving. In CVPR Work-
shops, 2017.

[35] Xizhou Zhu, Yujie Wang, Jifeng Dai, Lu Yuan, and Yichen Wei. Flow-
guided feature aggregation for video object detection. In ICCV. IEEE,
2017

[36] Wei Han, Pooya Khorrami, Tom Le Paine, Prajit Ramachandran, Mo-
hammad Babaeizadeh, Honghui Shi, Jianan Li, Shuicheng Yan, and
Thomas S Huang. Seqnms for video object detection. arXiv:1602.08465,
2016

[37] Subarna Tripathi, Zachary C Lipton, Serge Belongie, and Truong
Nguyen. Context matters: Refining object detection in video with
recurrent neural networks. arXiv:1607.04648, 2016.

[38] Kai Kang, Wanli Ouyang, Hongsheng Li, and Xiaogang Wang. Object
detection from video tubelets with convolutional neural networks. In
Computer Vision and Pattern Recognition, 2016.

[39] Kai Kang, Hongsheng Li, Tong Xiao, Wanli Ouyang, Junjie Yan,
Xihui Liu, and Xiaogang Wang. Object detection in videos with tubelet
proposal networks. In Computer Vision and Pattern Recognition, 2017.

[40] Yongyi Lu, Cewu Lu, and Chi-Keung Tang. Online video object detec-
tion using association lstm. In ICCV, 2017.

[41] M Andriluca, S. Roth, and B. Schiele. People-tracking-by-detection
and peopledetection-by-tracking. In Proceedings of the International
Conference on Computer Vision and Pattern Recognition (CVPR), 2008.

[42] J. Berclaz, F. Fleuret, and P. Fua. Robust people tracking with global
trajectory optimization. In Proceedings of the International Conference
on Computer Vision and Pattern Recognition (CVPR), 2006.

[43] Michael Breitenstein, Fabian Reichlin, Bastian Leibe, Esther Koller-
Meier, and Luc Van Gool. Online multi-person tracking-by-detection
from a single, uncalibrated camera. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 33(9), 2010

[44] Xizhou Zhu, Yujie Wang, Jifeng Dai, Lu Yuan, and Yichen Wei. Flow-
guided featur aggregation for video object detection. In ICCV. IEEE,
2017.

[45] Xizhou Zhu, Jifeng Dai, Lu Yuan, and Yichen Wei. Towards high
performance video object detection. In CVPR. IEEE, 2018.

[46] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. Detect to
track and track to detect. In ICCV, 2017.

[47] Broad, A., Jones, M.N., Lee, T. (2018). Recurrent Multi-frame Single
Shot Detector for Video Object Detection. BMVC.

[48] Cheng, B., Wei, Y., Shi, H., Feris, R.S., Xiong, J., Huang, T.S. (2018).
Revisiting RCNN: On Awakening the Classification Power of Faster
RCNN. ArXiv, abs/1803.06799.

[49] Everingham, M., Gool, L.V., Williams, C.K., Winn, J.M., Zisserman,
A. (2009). The Pascal Visual Object Classes (VOC) Challenge. Interna-
tional Journal of Computer Vision, 88, 303-338.

[50] Ketaro Wada, labelme: Image Polygonal Annotation with Python, 2016


