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Abstract—Object detection and face recognition are an integral
part of most surveillance systems in recent times especially in
the areas of manufacturing, construction surveillance, etc. In
this work, we address these problems by proposing practical im-
provements to existing state-of-the-art methods in multiple phases
with a focus on a plurality of application-level requirements. As
the first contribution, we propose to improve the performance
efficiency of fine-grained object detection through Multistage
Decoupling and Re-ID conditioning with former reducing miss
classification by mitigating the correlation-covariance issue and
latter reducing miss/wrong detection through re-identification
conditioned box propagation. As a second contribution, we
focus on improving face recognition under cases of occlusions.
Occlusion in faces results in non-isotropic clusters causing high
errors in face recognition, which is further increased due to
lack of availability of large datasets for novel environments.
To handle a lack of availability of large occluded face datasets
and enhancing face representations from existing state-of-the-
art face recognition models to a setting involving occluded faces
with small datasets, we propose to learn reference conditioned
projections, that projects the extracted representations into
the lower-dimensional manifold and are isotropic. Finally, we
show the advantages of these contributions through quantitative
evaluations of multiple state-of-the-art datasets and approaches
across multiple application domains, with the first one leading
to improved performance of object detection and second contri-
bution paving way for highly accurate face recognition. In the
due process, we also present new datasets, show comprehensive
experiments and practical advice from our extensive empirical
results for those interested in getting the most out of this work,
for developing real-world surveillance systems.

Index Terms—Convolutional Neural Network, Deep Learning,
Object Detection, Face Recognition

I. INTRODUCTION

Visual recognition technologies such as object detection, i.e.
predicting the exact location of a given object in an image
with a bounding box and face recognition i.e. identification
of people from images have graduated from proof of concept
level to being productized. Starting from the seminal work by
[1], proposing the first high performance deep convolutional
neural network (CNN) for image classification, the algorithms
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and systems have very far, with better performing networks
for image classification, such as the GoogLeNet [2], VGGNet
[3] and ResNet [4], as well as networks for object detection,
such as Fast-RCNN, Faster-RCNN [5], R-FCN [6], SSD and
its variants [7], [8] , YOLO and its variants [9], RetinaNet [10]
and very recently Mask-RCNN [11]. A similar track could see
in face recognition with state-of-the-art approaches including
[7] and [8] also follow such a strategy. Lately, all the CNN
based approaches have shown excellent performance in various
face recognition tasks, notable among them include [9], [10]
which achieves an accuracy-rate of 99.78% and 99.63% on
the facial dataset of Labeled Faces in the Wild (LFW) [11].
These high performing object detection and face recognition
modules now find applications in upcoming autonomous cars,
airport, industrial and manufacturing surveillance, etc.

II. CHALLENGES

Even after the huge success of deep learning with high
accuracies, a plethora of approaches fail to come through in
stage of novel applications ex: in the areas of construction,
industrial surveillance, this is despite all the additional bells
and whistles. More specifically they exhibit the following
challenges

1) To begin with, object detection which is the principal
component of any surveillance application, suffers from
the problem of false/missed detections and miss classi-
fications which are extremely costly resulting in safety
hazards [12].

2) Secondly, video stream based processing to reduce de-
tection errors is yet to be adapted for applications like
industrial and construction safety, despite mainstream
adaptation, in general, AI tasks [13], [14].

3) Finally, unlike existing areas of computer vision, where
there is the availability of large public datasets, the
best of existing research work in the applied areas of
surveillance is restricted due to lack of large datasets.

On the other hand, compared to object detection general
face recognition has reached near 100% accuracy across a
plurality of benchmarks, however to date, it remains difficult



to obtain satisfactory accuracy on faces varying in pose,
illumination, and occlusion, among which facial occlusion has
always been considered as an extremely challenging research
problem. While general face recognition has garnered a lot of
works over the past five years. Interests in recognition of faces
with occlusions have been fairly less, with limited focus on
generalization study of state-of-the-art face recognition models
for occluded faces. More specifically following are some of
the challenges in occluded face recognition

4) To begin with, there is neither the availability of large
datasets consisting of multiple identities with facial oc-
clusion, for training existing deep CNN face recognition
models from scratch nor is there a dataset sample that is
sufficient enough for using the classical domain adapta-
tion techniques involving finetuning, mapping functions,
etc.

5) Secondly on the applied side say, in the case of face
recognition in industrial scenes, there is a need to handle
occlusion of various types involving thicker and darker
eye protection glasses (welding glasses) that cover most
parts of the face. However, existing face recognition
algorithms show the problem of non-isotropic clustering
especially with the introduction of occlusion.

6) Finally, due to previously mentioned reasons there ex-
ist no benchmarks that validate the state-of-the-art ap-
proaches proposed to date.

III. CONTRIBUTION

Based on the above, through this work, we make the
following contributions.

• Firstly to tackle #3 and #4 we introduce i) Safety gear
detection dataset consisting of 5k images with annotations
for four safety gears including helmet, jacket, goggle and
glove and ii) Synthetically created occluded face datasets
based on popular public datasets. Further, we present a
large scale benchmark study on these using the current
state-of-the-art approaches.

• Second, to address #1 and #2 we propose to condition
the class label of the detected object in the current
frame based on the results of the re-identification of
objects computed in prior frames. Such a conditioning
mechanism helps in the propagation of class labels,
thereby reducing the miss classification. Further in this
work, it’s also supplemented with decoupled classification
refinement. Thereby extending single frame detectors into
video domain.

• Third, to tackle #5 we propose a reference conditioned
low-rank projection algorithm.

• Finally, we present comprehensive experimentation and
benchmarking involving 100+ experiments where we
achieve improvements in performance across all of the
previously mentioned datasets.

IV. RELATED WORK

Computer Vision for Industrial Safety Systems: Con-
struction safety monitoring has seen a large number of works

mainly focusing on helmets and jackets with Fang et al. [15]
and Son et al. [16] presenting works based on Faster-RCNN
and improving its generalization. Then there are works by Du
et al. [18] using motion and color information which reduces
the applicability of such a method in actual scenarios and
similar works are also proposed by Shrestha et al. [19] which
uses edge information. Then there are works using Histogram
of Oriented Gradient (HOG) with Circle Hough Transform
(CHT) [20], HOG feature template of a human object add cite
here, cascade classifiers [21] and color information [22]. On
the other side jackets have seen some works including those of
Morsberger et al. [23] which proposes using combination of
segmentation, localization and classification, then Park et al.
[24] that uses fluorescent color of safety vests by processing
local color histograms In general, most existing work focus
on detecting either hard hats or safety vests only. In our work,
we extend to scope to four classes of safety gears namely hard
hats, vests, goggles, and gloves respectively.

Object Detection: Object detection is typically dominated
by CNN’s beginning with series of works by Girshick et al. on
region proposal networks [25]–[27] then Single Shot Detectors
[29]–[35] Both region proposal style detectors, and single-
shot detectors, are fast and reasonably accurate. However
surveillance situation has streaming of frames, thus treating
frame-level input is of limited use. Yet there are few works
on video object detection broadly under box-based approaches
[37] and feature-based approaches [36] which are as explained.
Box based approaches act on the sequence of bounding boxes
from single frame detectors with some sort of linking strategy,
notable approaches include those by Han et al. [37] that
replaces standard Non-Maximal Suppression (NMS) with one
that incorporates bounding boxes from multiple frames and
Tripathi et al. [38] that uses an RNN. Then there are tubelets
and feature map-RNN combination by Kang et al. [39], [40]
& Lu et al. [41]. All these approaches are related to another
class of box-level techniques known as tracking-by-detection
[42]–[44] where the basic idea is to associate detections across
the output of an object detector applied independently to
sequential single-frame images to create tracks that can be
used to remove false positives and restore missed detections.
Then there are few approaches that directly link at feature level
initial work Zhu et al. [45] uses optical flow to warp feature
maps Friechtenhofer et al. [62] uses a deep network to com-
bine detection and tracking to improve object detection and
[46] combine two orthogonal ideas with a spatially adaptive
feature computation to further improve results. Overall in the
video object detection literature, there has been significantly
more work on box-level methods owing to its natural sync
with human thinking. As such in this work, we focus on box
based detectors. More specifically, in this work, we propose
a re-identification conditioned sequential detector with the
tracker to handle the problem of missed and incorrect detec-
tions. Furthermore, we address classification errors through
a combination of decoupled classification refinement and re-
identification conditioned sequential detector.

Occluded Face Recognition: Face recognition has two



decades of works with and most recently with [47] and then
followed by works of [48] which proposed an end-to-end
Siamese architecture trained with a contrastive loss function.
Multiple followup works build on similar lines, however with a
large amount of data [49]. Most notable among these includes
DeepFace [50] and FaceNet [51] which used between 100
million and 200 million face images of about 8 million
different people for training using a triplet loss function and
achieved an accuracy of 99.63% on the LFW benchmark.
While general face recognition has garnered a plethora of
works over the past five years*. Interests in recognition of
faces with occlusions have been fairly limited and typically
handled using two different types of methods namely local
features from non-occluded regions or reconstruction based
ideas. For the former Gabor wavelet features, PCA and SVM
were used in [52] to detect the occluded regions and LBP
descriptors were used to match the non-occluded regions and
the sparse representation-based classification (SRC) proposed
in [53] has received a lot of attention in the latter works.
Moreover, all these approaches still require a large amount of
occluded face data sets for training. Unlike these approaches,
we focus on adapting representations from state-of-the-art
face recognition models trained on large data sets of general
face recognition to occluded face recognition through a small
representative set of occluded faces.

Projecting Representations: Learning to project represen-
tations from source to target domain as seen lots of works
in computer vision. Notable works include [54] for joint
representation learning and [55] proposing a Bishifting Auto-
Encoder network. Then there most recent works of [56] and
[57] which uses projection for surveillance face recognition.
Our work is similar to previous works, in the sense that we too
consider front faces from public datasets such as LFW as the
source domain and images from another dataset with different
identities that are occluded by goggles as the target domain.
However, unlike these approaches, we focus on learning the
projection model with a small representative set of occluded
faces.

The rest of the paper is organized as follows. In section
V we present the developed datasets with experimental setup
used in this work. In section VI we brief on decoupled clas-
sification refinement, with VIII and VII presenting proposed
algorithms. Sections IX & X presents experiments and results.
Finally, in section XII, we conclude with discussions and
possible implications for future works. Please note that this
paper is a representative version of original works [58] & [59]
, which explains the ideas, algorithms and experiments in more
detail.

V. DATASETS

A. Occluded Face Recognition

Typically public benchmark datasets are either web scraped
or laboratory collected with different ages, poses, illumination,
expressions, facial hair, and other occlusions. Yet to the best
of our knowledge there exist no public datasets with goggle
occluded faces and those which exist either is not explicitly

TABLE I
DATASET STATISTICS OF VARIOUS FACE DATASETS

Dataset No of identities No of images
AT&T 40 400
ESSEX 394 7900

FEI 200 2800
GT 50 750
CFP 311 5000
LFW 1600 13000

GOFD 5 1000

collected for such a setting or requires spurious licensing.
Hence, we create synthetic goggled face images of the public
datasets, by augmenting glasses on the faces through keypoint
identification. Multiple augmented public datasets that have
been used in this work are shown in Table I along with the
size of the datasets and the extent of variation. Figure 1 shows
examples of goggled versions of the datasets so created.

Moreover, to evaluate our approach in a practical setting
we also collected an in house Goggle Occluded Face dataset
(GOFD). We place the following constraints as part of the
dataset collection setting

• Goggled Frontal Face, with varying occlusion levels
involving transparent and opaque goggles.

• Maximum of 45 degrees of horizontal variation in face
pose.

• Images are collected from cameras placed at a moderate
inclination upto 7 feet.

1) Reference and Test Images: All the goggled datasets
are split into two parts namely a reference a.k.a gallery set
and test a.k.a probing set. The reference set consists of 3
samples of images for each identity in the entire dataset.
Moreover, we don’t produce any additional reference images
through augmentation during testing. The reference images
were sampled randomly to avoid any bias on the results.

2) Support Images: As seen above, we use only 3 reference
image per identity and the largest of the benchmark datasets
[60] consists of only 1600 identities. Moreover, for projection
approaches to work well, there is a need for large datasets. As
such in this work, we use a support set which we concatenate
with the smaller reference sets in reference conditioning step
of our algorithm (See section VIII. In this work, we use the
LFW dataset (See section V) as the support set. While the
description of these sets, looks complex as we can see (see
VIII) the algorithm is intuitive and straightforward.

The dataset statistics including reference, test and sample
images for GOFD are as shown in Table I and Figure 1
respectively.

B. Safety Gear Detection

Since there is no off-the-shelf dataset available, a dataset
was created in an internal setting under simulated conditions
that is typical across various industrial sites. The simulated
workers along with their safety gears were annotated to
generate the ground truth for training. The dataset was
collected with varied illumination, posture and visual ranges



Fig. 1. Example images from datasets and network training strategy used in this work.

with annotations for boxes and class labels. The final dataset
statistics are as shown in Table VI. We separate the dataset
into three splits of training, development and test sets
randomly, in the ratio of 80%:10%:10%. Sample images and
their ground truth annotations are as shown in figure 1.

VI. MULTISTAGE DECOUPLED CLASSIFICATION
REFINEMENT (DCR)

Deep learning object detectors usually involve a backbone
network such as VGG or Resnet etc. that is trained on
large image classification datasets to yield scale-invariant
features. Following this, a localization branch is connected
to this backbone. This results in a conflict of covariance
and correlation, where correlated features are required for
classification and covariant features are needed for detection.
Alternatively, fine-tuning end-to-end will force the backbone
to gradually learn translation covariant feature, which might
potentially downgrade the performance of the classifier. As
such based on the works of Cheng et al. [61], we propose to
use a Multistage Decoupled Classification Refinement (DCR)
detector. Diagrammatic representation of the same is shown
in Figure 1.

VII. RE-ID CONDITIONED DETECTION ALGORITHM

A. Background

Given an continuous steam of video of frame It, t =
0, 1, ..N − 1, N,N + 1, .., T , our goal is to avoid missed
detection, wrong detections and miss classification across
the frames. Let Dt be the tracklet of frame t such that
Dt = {< Bt, Ct >} where Bt, Ct denotes its bounding boxes
and class label. A scheme widely adopted in previous work
[42]–[44] is sequential detection with tracking, outlined in
Algorithm 1.

Given a video frame It, an object detector for individual
images is first applied to produce per-frame detection result
Bt = DetectOnImage(It) where Bt denotes a set of bounding
boxes together with their corresponding category scores. Non-
maximum suppression is then applied to remove redundant
bounding boxes, resulting in Bt = NMS(Bt). Then the
tracking algorithm associates the existing tracklets Dt−1 to
the detection results Bt producing tracklets up to frame It
as Dt = AssociateTracklet(Dt−1, Bt) outputting {Bt}. Ad-
ditionally, Box propagation is applied, where detected boxes
in the existing tracklets Dt−1 are propagated to the current

frame, B
′

t = PropagateBoxKalman(Dt−1). The propagated
boxes are concatenated with the per-image detected boxes as
Bt = [B

′

t, Bt] which is again followed by non-maximum
suppression and are associated to the existing tracklets.

Algorithm 1: Sequential Detector with Tracker

Input: Video Frames {It}Tt=0

Output: : All boxes {Bt}Tt=0

Procedure:
B0 = DetectOnImage(I0)
Initialize the tracklets D0 from B0

for t = 1 to T
Bt = DetectOnImage(It)
B

′

t = PropagateBoxKalman(Dt−1)
Bt = [B

′

t, Bt] := Box Concatenation
Bt = NMS(Bt)
Dt = AssociateTracklet(Dt−1, Bt)

end for

B. Algorithm

Our target is to solve two problems of video level missed
& wrong detection and miss classification.

• Missed Detection: Missed detections are handled by
including boxes that are relevant, based on information
from prior frames and boxes of new detections.

• Wrong Detection: Wrong detections are handled by
coupling multiframe detections through Re-Identification
a.k.a Re-ID Conditioning.

• Miss Classification: Miss classification are handled by
propagating class labels. Further this is supplemented by
DCR detectors to avoid inherent network level classifica-
tion errors.

The revised re-identification conditioned detection algo-
rithm is as shown in Algorithm 2. Solution 1 is executed
by steps Mt = IOU(B

′

t, Bt) and Ot = [B
′

t, Bt] and So-
lution 2 is taken care by Nt = PersonReID(B

′

t, Bt) and
B

′

t =Mt and Nt or Ot.

VIII. REFERENCE CONDITIONED LOW RANK PROJECTION

A. Background

Typically across multiple computer vision problems the
resulting drop due change in environment is argued as a
problem of difference in data domains a.k.a generalization



TABLE II
DATASET CHARACTERISTICS OF SAFETY GEAR DETECTION DATASET.

Categories No Values Total Instances Number of
FramesH J GL GO

Illumination 1 Bright 800 600 400 400 500
2 Dark 400 400 400 400 500

Posture
1 Standing 500 600 400 400 500
2 Bending 350 200 100 200 500
3 Sitting 300 100 150 50 500

Range
1 Small 200 150 200 300 500
2 Medium 150 100 50 50 500
3 Large 100 100 50 100 500

Occlusion
1 No occlusion 50 50 50 50 500
2 Partial Occlusion 50 50 50 50 500

Algorithm 2: Re-identification Conditioned Sequential
Detector with Tracker

Input: Video Frames {It}Tt=0

Output: : All boxes {Bt}Tt=0

Procedure:
B0 = DetectOnImage(I0)
Initialize the tracklets D0 from B0

for t = 1 to T
Bt = DetectOnImage(It)
B

′

t = PropagateBoxKalman(Dt−1)
Mt = IOU(B

′

t, Bt)
Nt = PersonReID(B

′

t, Bt)
Ot = [B

′

t, Bt]
B

′

t =Mt and Nt or Ot := Re-ID Conditioning
Bt = NMS(Bt)
Dt = AssociateTracklet(Dt−1, Bt)

end for

error [54]. While there are a plethora of approaches proposed
[55] for domain adaptation, most of these are data-intensive
and for many environments face data is extremely scarce
owing to the issue of privacy and labor involved in data
collection. As such these approaches are not suitable for our
problem in this work we propose a simple adaptation technique
for face representations extracted from a pretrained network
that can adapt with small samples (3 samples/face identity)
from the target domain (goggled faces) based on following
intuitions.

• Projecting data into a lower-dimensional subspace re-
moves noisy dimensions and makes it isotropic.

• Projection approaches aim to find the directions of max-
imum variance in high-dimensional data and projects it
onto a new subspace with equal or fewer dimensions than
the original one. As such, it would capture information
even from samples that have the smallest representation
among the population used for learning projections.

Overall, projecting the representations to lower-dimensional
manifold conditioned on reference images i.e. considering the
information from reference image is preserved should improve
the performance of the face representation for goggle occluded
faces.

B. Algorithm

Let S(i)ε<P and T (i)ε<P be representations of the large
face data sets that don’t contain any goggle occluded faces and
small sample of goggle occluded reference faces respectively
obtained from pretrained models.

Let X(i) = {x1, x2, ....xM , xM+1, ....xM+K} = S||T be
the matrix of dimension (M+K)xP consisting of M+K repre-
sentations so obtained through vertical concatenation of S and
T . Originally from section VIII-A T (i) is non-isotropic. We
model low rank projection as a q-rank linear model denoted
by its rank-q affine hyper-plane as.

f(λ) = µ+ Vqλ (1)

where µ represents mean of T of dimension <p and Vq is
a PxQ matrix.

Fitting such a model is done by objective

min
µ,λi,Vq

M+K∑
1

||xi − µ− Vqλi||2 (2)

We partially optimize this using Equation 1, leading to
minimizing Vq through

min
Vq

M+K∑
1

||(xi −
−
x)− VqV Tq (xi −

−
x)||2 (3)

which we solve using Singular Value Decomposition.

Algorithm 3: Reference Conditioned Low Rank Pro-
jection

Input: Face representations Sε<d, Tε<d, Xε<d
Output: Processed Representations X

′
ε<d

Procedure:
• Reference Conditioning: Concatenate representations

from source and target set X = S||T
• Optimization: Minimize

min
µ,λi,Vq

∑M+K
1 ||xi − µ− Vqλi||2

• Projecting Representations: X
′
= VqX



TABLE III
RESULTS (RANK-1 ACCURACY %) OF BASELINE EXPERIMENTS USING

VGGFACE, ARCFACE AND LIGHTCNN ON PUBLIC BENCHAMRK
DATASETS WITH OCCLUDED REFERENCE IMAGES

Dataset VGGFace LightCNN MobileFaceNet
ArcFace

ResNet
ArcFace

ATT 85.13 99.32 97.98 99.67
ESSEX 90.71 96.25 93.62 98.72

FEI 75.23 92.1 84.28 99.29
GT 85.47 90.13 89.25 99.85
CFP 32.02 63.53 48.87 87.26
LFW 22.42 54.92 49.08 88.14

TABLE IV
RESULTS (RANK-1 ACCURACY %) OF BASELINE EXPERIMENTS USING

VGGFACE, ARCFACE AND LIGHTCNN ON PUBLIC BENCHAMRK
DATASETS WITH NON-OCCLUDED REFERENCE IMAGES

Dataset VGGFace LightCNN MobileFaceNet
ArcFace

ResNet
ArcFace

ATT 53.51 91.23 91.99 99.33
ESSEX 62.03 90.8 84.56 98.28

FEI 56.70 93.6 84.72 99.63
GT 86.05 91.48 86.11 99.69
CFP 17.52 60.12 41.42 86.7
LFW 8.09 53.06 47.36 87.26

IX. OCCLUDED FACE RECOGNITION EXPERIMENTS

A. Experiment 1: Baselines:

To begin with, we first created an exhaustive baseline
to evaluate generalization performance using representations
from pretrained models for goggled public face datasets. For
this experiment, all the pretrained models are used as it is,
without any modification to obtain the following results.

Based on the results from Table III, we summarize as
follows.

• Most of the representation previously trained on huge
datasets, tend to perform very badly across the other
datasets with goggle occluded faces due to inherent
dataset bias.

• The face representation so generated is non-isotropic
leading to bad performance in face recognition, especially
those that involve simple distance-based metrics such as
cosine and euclidean.

With these observations in mind, in section VIII we present
experiments on RLCP.

B. Experiment 2:

Following baselines, experiments are performed on RLCP
where we first execute reference conditioning and optimization
using 3. After this, each of the test images is re-projected using
the learned projection model of that particular dataset. For
example, for the AT&T dataset, we first do reference condi-
tioning by concatenating the face representations of reference

TABLE V
RESULTS (RANK-1) OF BASELINE EXPERIMENTS ON GOFD DATASET

WITH OCCLUDED AND NON-OCCLUDED FACES.

Dataset VGGFace LightCNN MobileFaceNet
ArcFace

ResNet
ArcFace

GOFD-OCR 86.81 99.51 85.08 98.57
GOFD-NOCR 69.76 91.82 62.76 99.75

TABLE VI
RESULTS (RANK-1 ACCURACY %) OF EXPERIMENTS USING REFERENCE
CONDITIONED LOW RANK PROJECTION WITH OCCLUDED REFERENCE

IMAGES.

Dataset VGGFace LightCNN MobileFaceNet
ArcFace

ResNet
ArcFace

ATT 86.31 99.32 97.98 99.67
ESSEX 92.00 96.25 96.32 98.72

FEI 79.49 92.3 85.11 99.38
GT 85.47 90.97 89.25 99.85
CFP 34.1 63.53 48.87 87.26
LFW 23.34 54.92 49.08 88.14

images (See Table I) and images from the support set which
is the LFW dataset (See section V), which in turn is used to
learn the projection model, used for projecting representation
in test time. Finally, a distance metric between the projected
reference and test representations is calculated to obtain a
correct face identity. Results so obtained are as shown in Table
III. Comparing Tables III and III we can see that

• RLCP improves performance, as visible comparing re-
sults over baselines and maximum improvement are vis-
ible on the pretrained VGGFace model and less when
representations are from the pretrained ArcFace model.

• Moreover, we can see a maximum improvement of 1.2%
for AT&T, 1.3% for Essex dataset, 2.1% for the CFP
dataset, 4.2% for FEI and 0.92 % for LFW datasets on
VGGFace and 0.8% for GT dataset on LightCNN.

• Further, we can see that there is a limited improvement
in results, using representations from ResNet-Arcface
except 0.1% improvement on the results of FEI dataset.
This is mainly, because by default the results of Arcface
are high compared to that of other pretrained models,
leaving limited room for improvements.

C. Experiment 3:

Previous experiments we used one reference image for
each face identity in the dataset with occlusion. While this
setup is ideal, in most real-time applications due to lack of
availability of goggle occluded reference image we need to use
a standard face image without any occlusion, that is collected
as part of the identification process or part of the database
of people or so on. Considering this we experimentally verify
our developed approach under this setting, to obtain results
as shown in Table IV and VIII respectively. In Table IV, we
find the baselines and in Table VIII we show improvement,
with both cases using non-occluded reference face images.
The reference image selected is in line with that of experiment
X-A. Comparing Table IV, VIII and results from experiment
X-A we can infer following:

• The results of experiment 2 is lesser than that of exper-
iment 1 by an average of 10%. This is true in both the
cases of baselines and the improvements so obtained. We
speculate that the drop is because of the resulting miss-
alignment in sub-spaces.

• Compared to baselines under the same setting we see
maximum improvement of 2.4% for AT&T using Light-
CNN,2.3% for Essex using Light-CNN, 0.1 % for FEI on



TABLE VII
RESULTS (RANK-1 ACCURACY % ) OF EXPERIMENTS USING REFERENCE

CONDITIONED LOW RANK PROJECTION ON GOFD DATASET WITH
OCCLUDED AND NON-OCCLUDED FACES.

Dataset VGGFace LightCNN MobileFaceNet
ArcFace

ResNet
ArcFace

GOFD-OCR 91.13 100 86.1 98.81
GOFD-NOCR 77.89 93.02 70.26 99.75

TABLE VIII
RESULTS (RANK-1 ACCURACY %) OF EXPERIMENTS USING REFERENCE

CONDITIONED LOW RANK PROJECTION WITH NON-OCCLUDED
REFERENCE IMAGES.

Dataset VGGFace LightCNN MobileFaceNet
ArcFace

ResNet
ArcFace

ATT 54.76 93.63 92.78 100
ESSEX 62.03 93.16 84.93 98.28

FEI 56.70 93.6 84.81 99.7
GT 86.05 92.82 86.78 99.85
CFP 17.52 60.12 41.42 86.7
LFW 8.09 53.06 47.36 87.26

MobileNetArcFace, 1.4% on LightCNN pretrained face
recognition models.

• In line with experiment 1, we can see limited improve-
ment in results of ArcFace and maximum improvement in
the case of VGGFace. Overall the proposed approach has
an average improvement of 1.29% over baseline which is
0.52% higher than that obtained in experiment X-A.

D. Experiment 4:

While we obtained results on synthetically occluded ver-
sions of these datasets in section X-A and IX-C, real datasets
are often complex with varying noise information such as
reflections, etc. In that sense, we further compare the results
on a realistic GOFD dataset. The results so obtained are as
shown in Table V and VII. On comparing results we can see
that

• The proposed approach improves results of all the pre-
trained models with an average of 1.51% with occluded
reference faces and 5.6% with non-occluded faces.

• We obtained a maximum improvement of 8.13% and
4.32% with non-goggled reference and goggled reference
images using VGG-Face representations.

• Again we obtain the least improvement on Arc-face as it
produces high results.

X. RE-ID CONDITIONED DETECTION EXPERIMENTS

Previously in section VII we presented the re-identification
conditioned detector with tracker algorithm. In this section, we
present a detailed experiment on Re-ID conditioning with abla-
tion study and results. The analysis and findings are presented
in three parts namely i) Results across detectors ii) Results
across various parameters iii) Comparison across baselines and
proposed algorithms iv) Error source and pending problems.

A. Experiment 1: Baselines

To begin with, we create an exhaustive evaluation in the
context of safety gear detection using DCR detectors (section
VI) and sequential detector with tracker algorithm (Algorithm

1), on the datasets discussed earlier in section VI. Firstly, we
trained three DCR Detectors on the training sets, with each
of the architectures tuned for various hyperparameters such as
learning rate, etc. to ensure quicker convergence. The results
so obtained are as shown in Table IX and X. The details of
the analysis reveal the following.

• Baseline v/s Proposed Approaches: Comparing the
baseline results in Table IX with results obtained using
Algorithm 1 from Table X. From Table X we can see, that
sequential detector does perform significantly better than
the baseline detectors, by a margin of 2% mAP. Compar-
ing Tables IX and X, we can see that this is mainly due to
the increase in results of conditions involving occlusion
and range. We will revisit analysis in upcoming section
(see section XI) for each conditions in section XI.

• Results across Detectors: As far as individual detectors
go, DCR-SSD overall performs significantly better than
both DCR-Faster-RCNN and DCR-RetinaNet for most of
the safety gears. More specifically DCR-SSD outperforms
DCR-RetinaNet for all the four safety gears across all the
conditions of illumination, posture, range, and occlusion.
This is also true even in the case of DCR-SSD with Al-
gorithm IX. DCR-SSD and DCR-Faster-RCNN perform
very similarly to DCR-Faster-RCNN across both Tables
IX and X except DCR-Faster-RCNN performs well across
illumination and occlusion by an average of 2% mAP.
Further this observation is true across Tables IX and
X. We believe this is because of the richer capacity of
region proposal network where during ROI pooling, they
retain information that is mostly dominated, which in our
case the detection themselves rather than the factor such
as illumination or occlusion. We leave a more detailed
analysis of these results for future works.

• Errors: As far as the source of errors, in individual
safety gears, are concerned, the insight so obtained from
error analysis was common across all the detectors. For
Helmet, Jacket and Goggle the drop in mAP is mainly
due to classification error. However, for glove missed
detection error dominated more than the classification
error.

B. Experiment 2: Re-ID Conditioning

Having examined the baselines using different detector
alone and with algorithm 1, in this section we asses the perfor-
mance using proposed re-identification conditioned sequential
detection approach. As usual, use multistage DCR detectors
of Faster-RCNN, SSD, and RetinaNet.

More specifically in this experiment, we modify the step of
concatenation of propagated boxes, in the original sequential
detection algorithm to include boxes that are relevant from
previous frames and the newly predicted boxes. We do this
in three stages, where we first detect boxes in the current
frame, next we find boxes relevant w.r.t previous frame through
Intersection-over-union. Following this, we do re-identification
of objects so obtained after IOU step to reduce classification
error. Since our core task is to detect if the safety gears are



TABLE IX
BASELINE PERFORMANCE (MAP@ THRESHOLD=0.55) USING VARIOUS DETECTORS. H:=HELMET, J:=JACKET,GL:=GLOVE,GO:=GOGGLE

Categories DCR-Faster-RCNN DCR-SSD DCR-RetinaNet
H J GO GL H J GO GL H J GO GL

Illumination 0.76 0.67 0.93 0.73 0.74 0.67 0.93 0.73 0.70 0.70 0.91 0.73
Posture 0.79 0.67 0.88 0.79 0.79 0.67 0.88 0.78 0.70 0.74 0.89 0.78
Range 0.74 0.67 0.87 0.75 0.74 0.64 0.87 0.77 0.67 0.67 0.87 0.77

Occlusion 0.77 0.65 0.90 0.75 0.75 0.64 0.90 0.74 0.68 0.68 0.9 0.74
Average 0.77 0.67 0.90 0.75 0.75 0.65 0.90 0.75 0.68 0.70 0.90 0.76

TABLE X
PERFORMANCE (MAP@ THRESHOLD=0.55) OF VARIOUS DETECTORS USING SEQUENTIAL DETECTOR WITH TRACKER.H:=HELMET,

J:=JACKET,GL:=GLOVE,GO:=GOGGLE

Categories DCR-Faster-RCNN DCR-SSD DCR-RetinaNet
H J GO GL H J GO GL H J GO GL

Illumination 0.76 0.67 0.93 0.73 0.74 0.67 0.93 0.73 0.7 0.7 0.91 0.76
Posture 0.79 0.67 0.88 0.79 0.79 0.67 0.88 0.78 0.7 0.74 0.89 0.79
Range 0.74 0.68 0.89 0.76 0.76 0.66 0.89 0.78 0.67 0.67 0.87 0.75

Occlusion 0.79 0.65 0.91 0.76 0.76 0.66 0.91 0.74 0.69 0.69 0.91 0.76
Average 0.77 0.67 0.90 0.76 0.76 0.67 0.90 0.76 0.69 0.70 0.90 0.77

TABLE XI
PERFORMANCE (MAP@ THRESHOLD=0.55) OF USING PROPOSED RE-ID CONDITIONED DETECTION ALGORITHM. H:=HELMET,

J:=JACKET,GL:=GLOVE,GO:=GOGGLE

Categories DCR-Faster-RCNN DCR-SSD DCR-RetinaNet
H J GO GL H J GO GL H J GO GL

Illumination 0.81 0.81 0.91 0.77 0.83 0.80 0.92 0.73 0.82 0.81 0.91 0.76
Posture 0.80 0.81 0.87 0.78 0.84 0.80 0.92 0.78 0.82 0.80 0.89 0.79
Range 0.86 0.8 0.89 0.77 0.87 0.78 0.89 0.78 0.81 0.78 0.87 0.75

Occlusion 0.87 0.81 0.91 0.77 0.87 0.81 0.91 0.74 0.83 0.79 0.91 0.76
Average 0.83 0.81 0.90 0.77 0.85 0.80 0.91 0.76 0.82 0.80 0.90 0.77

worn, rather than 1-1 mapping of people between frames we
conjecture re-identification will significantly help in improving
results. Finally, we merge these re-identified boxes with newly
obtained detection for the current frame. Thus in the process,
we rectify both the classification labels and detected boxes if
any. The results so obtained are as shown in Table XI for all
the three detectors.

• Baseline v/s Proposed Approaches: Firstly comparing
Tables XI with XI and IX, we see that the results are sig-
nificantly higher across all the conditions of illumination,
posture, range and occlusion.

• Results across Detectors: In line with observations from
section X-A we can see that DCR-SSD outperforms
DCR-RetinaNet across all the results and performs very
similar to DCR-Faster-RCNN. Further comparing Tables
XI,X and IX we can see that mAP improves by an average
of 10% for conditions involving range and occlusion,
which is as expected when detection is coupled with
tracking and re-identification. Also, we can see, that
Re-ID conditioned DCR-SSD outperforms DCR-Faster-
RCNN for Helmet, Goggle, and Re-ID Conditioned
DCR-Faster-RCNN outperforms DCR-SSD for Glove
and Jacket by an average of 1%. Also, the results of
gloves are very similar across the detectors and across

the Tables XI,X and IX. This is because, the detectors so
trained seldom detect gloves or gives the wrong detection,
as such leading to higher error, compared to other safety
gears.

• Errors: This is in line with, previously described obser-
vation.

XI. ABLATION STUDY

To evaluate the robustness of the developed approach, in this
section we study the impact of parameters such as illumina-
tion, posture, range, and occlusion on the overall performance
across the baselines and the proposed algorithm.

A. Impact of Illumination & Posture

Typically industrial environments have long works hours
under varying lighting conditions (day, night, outdoor, indoor)
with complex tasks involving carrying bricks, bending bars
resulting in varying illumination and posture conditions. To
test the sanity of the developed idea, we initially had collected
datasets with a similar setting. Here we present experimental
results and findings so obtained.

From experiments, we can make the following observations
• Baseline v/s Proposed Approaches & Errors: In case

of posture, we obtain a net improvement of 1% and



TABLE XII
COMPARISON OF PERFORMANCE (MAP@ THRESHOLD=0.55) ACROSS APPROACHES WITH VARYING ILLUMINATION

Approch DCR-Faster-RCNN DCR-SSD DCR-RetinaNet
H J GO GL H J GO GL H J GO GL

Baseline
Bright 0.78 0.72 0.94 0.73 0.76 0.72 0.94 0.73 0.70 0.74 0.93 0.76
Dark 0.72 0.63 0.92 0.73 0.72 0.63 0.92 0.73 0.70 0.65 0.9 0.76

Average 0.76 0.67 0.93 0.73 0.74 0.67 0.93 0.73 0.7 0.7 0.91 0.76

Algorithm 1
Bright 0.78 0.72 0.9 0.76 0.76 0.72 0.93 0.73 0.7 0.7 0.91 0.76
Dark 0.72 0.63 0.9 0.76 0.76 0.63 0.92 0.73 0.69 0.69 0.9 0.76

Average 0.76 0.67 0.93 0.73 0.74 0.67 0.93 0.73 0.7 0.7 0.91 0.76

Algorithm 2
Bright 0.82 0.82 0.91 0.77 0.84 0.8 0.92 0.73 0.82 0.81 0.91 0.76
Dark 0.81 0.81 0.9 0.77 0.82 0.8 0.91 0.73 0.81 0.8 0.9 0.76

Average 0.81 0.81 0.91 0.77 0.83 0.8 0.92 0.73 0.82 0.81 0.91 0.76

14% mAP for Helmet and Jacket classes, with a drop
of 1% mAP for glove and goggle. Also, we don’t see
any improvement for Algorithm 1, when compared to
baselines. In case of illumination comparing results across
baseline, algorithm 1 and algorithm 2, we can see that an
average improvement of 9% for Helmet, 13% for Jacket
and 3% for glove and goggle showing a minor drop of
1%.

• Results across Detectors: Among all the detectors with
various posture conditions DCR-SSD, produces top re-
sults for Helmet and Goggle, while DCR-RetinaNet pro-
duces the best result for Jacket and Glove. DCR-Faster-
RCNN produces results very close to that of RetinaNet,
this is unlike the case of illumination. We believe this is
because of feature pyramids used as part of the DCR-
RetineNet architecture. However since, the net difference
being 1%, we leave such an analysis of the impact of
feature pyramids on detecting varying sized objects to
future work. However, for under varying illumination,
DCR-SSD, produces top results for Helmet and Goggle,
while DCR-Faster-RCNN produces the best result for
Jacket and Glove.

• Results across the parameter: Among all the results of
varying posture, we see that results with standing posture
are higher than that of bending and sitting postures.
Further, we also see that results for bending and sitting
are similar to one another. Moreover, this trend is con-
sistent across all the algorithms and across the different
detectors. We also see that the results of gloves are
constant across all the experiments. Results under bright
illumination are higher by an average mAP of 1% across
all the experiments. More specifically for the baseline
approach, Algorithm 1 and Algorithm 2 brighter results
are higher by 4%, 2%, and 1% mAP respectively, which
shows that the proposed approach does improve results
with varying brightness conditions, where the detectors
do fail.

B. Impact of Range & Occlusion

Detectors are extremely sensitive to the size of objects, this
especially true in case of indoor cameras and open cameras
catering large visual ranges, especially due to stochastic place-
ments. Further much of surveillance areas involve occlusion

due to people and other objects. All these factors cause missed
or wrong detections. To verify the robustness of the proposed
approach, we study the impacts of the previously mentioned
aspects. Experiments on this show following observations.

• Baseline v/s Proposed Approaches & Errors: Com-
pared to baseline, algorithms 1 and 2 improves results
of large range objects by 1% and 4% respectively. In
general, we can see that the improvement obtained is
directly related to the distance of the object from the
camera. We obtain an average improvement of 13% mAP
for Helmet, 12% mAP for Jacket, 1% for goggles and
gloves each respectively.

• Results across Detectors: As far as detector’s perfor-
mance goes, DCR-Faster-RCNN obtains the best per-
formance for detecting objects with occlusion across
the baseline, algorithm 1 and algorithm 2. Followed by
DCR-SSD and DCR-RetinaNet. A similar trend can ve
observed for ranges.

• Results across varying parameters: For detecting non-
occluded objects the results of RCNN and SSD is similar
and RetinaNet is lower than both by an average of 1%
mAP. For occluded objects, we see a net improvement
of 17% helmet and jacket, 0.02% for goggles and 0.01%
for glove respectively and non-occluded objects we see an
improvement of 6%, 14% and 1% for Helmet, Jacket and
Glove classes. Moreover, we see that the improvement
obtained with occlusion is higher than that of objects
without occlusion. The results of frames with objects
with a large range are the least and the small range is
the highest. This is consistent across all the experiments.
Finally, for objects with a large range, we can see that
algorithm 2 produces the maximum improvement in SSD
with 8% mAP for the helmet, 14% for the jacket, 2% and
3% each for glove and goggle respectively.

XII. DISCUSSIONS & CONCLUSION

In this work we present our work on RCLP, Re-ID Con-
dition with state of the art algorithms. We created large
benchmark datasets for occluded face recognition and safety
gear detection with exhaustive baselines. Following which
we investigated the proposed approaches for improvements
in results, errors, etc. In the process, we did exhaustive
ablation study with varying parametric conditions of RLCP



TABLE XIV
COMPARISON OF PERFORMANCE (MAP@ THRESHOLD=0.55) ACROSS APPROACHES WITH VARYING RANGE

Approch DCR-Faster-RCNN DCR-SSD DCR-RetinaNet
H J GO GL H J GO GL H J GO GL

Baseline

Small 0.7 0.59 0.75 0.64 0.69 0.54 0.75 0.67 0.66 0.59 0.75 0.64
Medium 0.73 0.68 0.9 0.72 0.74 0.65 0.9 0.74 0.67 0.68 0.92 0.72

Large 0.77 0.78 0.96 0.87 0.77 0.78 0.96 0.87 0.67 0.78 0.95 0.87
Average 0.74 0.67 0.87 0.75 0.74 0.64 0.87 0.77 0.67 0.67 0.87 0.75

Algorithm 1

Small 0.7 0.59 0.77 0.66 0.72 0.56 0.77 0.7 0.66 0.59 0.75 0.64
Medium 0.73 0.7 0.92 0.74 0.76 0.65 0.92 0.74 0.67 0.68 0.92 0.72

Large 0.77 0.77 0.98 0.87 0.78 0.78 0.98 0.89 0.67 0.78 0.95 0.87
Average 0.74 0.68 0.89 0.76 0.76 0.66 0.89 0.78 0.67 0.67 0.87 0.75

Algorithm 2

Small 0.77 0.69 0.77 0.69 0.77 0.68 0.77 0.7 0.69 0.67 0.75 0.64
Medium 0.88 0.77 0.92 0.75 0.88 0.77 0.92 0.75 0.79 0.75 0.92 0.72

Large 0.9 0.92 0.98 0.87 0.91 0.87 0.98 0.89 0.89 0.92 0.95 0.87
Average 0.86 0.8 0.89 0.77 0.87 0.78 0.89 0.78 0.81 0.78 0.87 0.75

TABLE XV
COMPARISON OF PERFORMANCE (MAP@ THRESHOLD=0.55) ACROSS APPROACHES WITH VARYING OCCLUSION

Approch DCR-Faster-RCNN DCR-SSD DCR-RetinaNet
H J GO GL H J GO GL H J GO GL

Baseline
Occlusion 0.72 0.61 0.82 0.69 0.67 0.61 0.82 0.69 0.62 0.62 0.82 0.69

No-Occlusion 0.83 0.68 0.96 0.8 0.83 0.68 0.96 0.8 0.74 0.7 0.96 0.8
Average 0.77 0.64 0.9 0.75 0.75 0.64 0.9 0.74 0.68 0.68 0.9 0.75

Algorithm 1
Occlusion 0.76 0.62 0.84 0.69 0.68 0.62 0.84 0.69 0.62 0.63 0.84 0.69

No-Occlusion 0.84 0.68 0.96 0.81 0.84 0.68 0.96 0.8 0.76 0.71 0.96 0.81
Average 0.79 0.65 0.91 0.76 0.76 0.66 0.91 0.74 0.69 0.69 0.91 0.76

Algorithm 2
Occlusion 0.86 0.79 0.84 0.72 0.87 0.79 0.84 0.69 0.81 0.77 0.84 0.69

No-Occlusion 0.88 0.84 0.96 0.82 0.87 0.84 0.96 0.8 0.84 0.82 0.96 0.81
Average 0.87 0.81 0.91 0.77 0.87 0.81 0.91 0.74 0.83 0.79 0.91 0.76

and Re-ID Conditioning. As far as occluded face recognition
is concerned, we investigated the proposed approaches with
multiple experiments in line with that of earlier benchmarks
where we obtained an average improvement of 0.77% and
maximum improvement of 4.25% on the FEI dataset which
we can see from Table III. We further investigated the effect
of using non-occluded reference images to show an average
improvement of 1.29% and a maximum of 2.46% across the
synthetically created occluded face datasets. To verify the
sanity of the proposed approach on realistic use-cases, we
further verified the proposed approach on the GOFD dataset
where we obtained a maximum improvement of 8.13% and
4.32% respectively when using non-occluded and occluded
faces respectively. We further investigated the Re-DI con-
ditioning approaches with multiple experiments where we
first created benchmarks with DCR approaches and sequential
detectors without re-identification. Following this, we did
a broad evaluation keeping robustness of the detectors for
various conditions of illumination, posture, range, and occlu-
sion. While we addressed the aforementioned issues through
low-rank projection, we think there is still a possibility of
improving the results, especially with a large gap existing
between VGGFace and ArcFace. In our experiments, we could
see that the Rank-5 accuracy metric is almost 100% which
suggests combining re-ranking and low-rank projection. Also,
instead of the distance metric, a more robust approach of
voting classifiers could be explored. Additionally, across all
the experiments, gloves had the least results owing to the
wrong detection, which needs to be addressed. Finally, instead

of DCR based detectors, we can explore cascaded detectors
which are robust to various environmental changes.
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