
Towards State-of-the-Art Object Detection: A
Multistage Improvement of Single Shot Multibox

Detector
Manikandan R

Research and Development Center
Hitachi India Pvt Ltd

Bangalore, India
manikandan@hitachi.co.in

Abstract—Object detection is a fundamental problem in com-
puter vision with wide range of applications, from image tagging
and indexing to applications related to surveillance, autonomous
vehicles, and robotics. We address this problem by proposing
practical improvements to an existing state-of-the-art object de-
tection method i.e. Single Shot Detector (SSD) in multiple stages
with focus on plurality of application level requirements. As the
first contribution, we propose to improve performance efficiency
by automatically selecting the scales of the default boxes. The
scales of the default boxes determine the absolute size of the
objects being searched for at different layers of the network,
respectively, and hence are better off being tuned for the specific
statistics of the object and the current data under inspection.
As a second contribution, we focus on compressing the detection
model to accommodate it for the low memory applications with
limited compromise in accuracy. As a third contribution, we
focus on reducing computations by pruning the search space
using semantically-nearest neighbor images from the training
set. We show the advantages of these contributions through
quantitative evaluations of multiple state of the art datasets across
multiple application domains with, the first one leads to improved
performance, the second and third contribution pavying way for
reduced memory requirement and higher detection speeds.

Index Terms—Single Shot Detector, Compression, Scale Selec-
tion, Covex Optimization

I. INTRODUCTION

Visual recognition technologies such as image classification,
i.e. predicting the objects, scene, attributes etc. present in an
image, and object detection, i.e. predicting the exact location
of a given object in an image with a bounding box, have
graduated from proof of concept level to being productizable.
Starting from the seminal work by [1], proposing the first high
performance deep convolutional neural network (CNN) for
image classification, the algorithms and systems have very far,
with better performing networks for image classification, such
as the GoogLeNet [2], VGGNet [3] and ResNet [4], as well as
networks for object detection, such as Fast-RCNN [5], Faster-
RCNN [7], R-FCN [8], SSD and its variants [9], [10] , YOLO
and its variants [11], RetinaNet [12] and very recently Mask-
RCNN [13]. The high performing object detection modules
now find applications in upcoming autonomous cars, visual
surviellance etc.

A. Contributions

With the target of industrial applications, in the present
paper, we propose to improve the implementation of the
popular and high performing Single Shot Detector (SSD) by
[9] with three contributions. As the contribution, we propose
to automatize the selection of some key parameters, i.e. the
scales of the default boxes that control what sized objects
will be searched for at the different resolution CNN layers.
As a second contribution we propose a multilayer pruning
framework to compress the model catering lower memory
needs. As the final contribution, we aim to improve the
detection speed of the object detector in two phases initially
by retrieving semantically similar images from the training set
and using the spatial distribution of the object in the retrieved
images as a prior for the search space in the current image.
All these stages are generic and could be used with any of the
existing detectors with some minor changes. We validate the
improvements over four benchmark data sets namely KITTI
[14], TSDB [15]–[17], RDDB [18] and PASCAL VOC [19].
We show empirically that (i) automatic tuning of default
boxes leads to improvements in performances over the default
parameter settings of SSD and (ii) the Nearest Neighbor based
pruning allows us to obtain a trade-off between accuracy and
speed of prediction and iii) Multi layer pruning improves the
speed of the detector with limited drop in accuracy.

B. Related Work

In this section we present, existing literature related to
Object detection and Model Compression in brief.

Object Detection and its Improvements: Object detection
has a long history in computer vision with the initial works
based on bag words features with nonlinear SVMs [20] and
Histogram of Gradient (HOG) features [21], [22]. The current
state-of-the-art object detection systems are now exclusively
based on deep Convolutional Neural Networks (CNN). Some
representative works include Region based CNN and its fast
[5] and faster [7] variants, Single Shot Detector (SSD) [9] and
You Only Look Once [11]. While the intial detectors focused
on using existing deep networks [1] to classify a limited

TABLE I: Dataset statistics of KITTI object detection bench-
mark used in this work. All the results reported are on the
Modified set.

Training Validation Testing
Set-Original 7481 0 7518
Set-Modified 5983 1497 7518

number of object proposals per image, the later methods tried
to do both, the object proposal prediction and classification,
together in one architecture [5], [7]. In the current generation
methods, the architectures do not have object proposals, but
do prediction for a large number of possible object positions
[9]–[11]. These methods obtain the best performances on
public benchmark datasets while being very fast as well. We
use the current generation of methods in the current work
and build on them.

Object detection and Compression: While there is a
large body of works on compression of classification based
architectures, very few works are done till date on compres-
sion of object detection based deep learning models. Most
notable are works by [23] which focuses on compressing
SSD by using deconvolution to analyze kernels and active
neurons, thereby removing inactive neurons and redundant
kernels. Alternatively, [24] proposed a trainable framework
for multiclass object detection through knowledge distillation
via the introduction of weighed cross entropy and teacher
bounded regression for knowledge distillation. Finally, in the
very recent work [25], focus on eliminating channels by
sampling using multiple methods and fine-tuning the resulting
model on the given task. In conclusion, works that focus
on SSD, concentrate either only a few layers of the SSD
architecture or use compact base networks which result in
reduced performance. In our work, we focus on compressing
original SSD with VGG16 as its base network.

II. DATASET

In this section we describe various datasets that are used as
part of this work.

A. KITTI object detection benchmark

To evaluate on autonomous driving applications we use the
well-known KITTI Vision Benchmark Suite [14] for training
and evaluating our detection models. The dataset consists of
synchronised stereo camera and lidar frames recorded from
a moving vehicle with annotations for eight different object
classes, showing a wide variety of road scenes with different
appearances. We only use the 2D detection dataset train and
test the models III. There are 7,518 frames in the KITTI test set
whose labels are not publicly available. The labelled training
data consist of 7,481 frames which we split into two sets for
training and validation (80% and 20% respectively). While
the object detection benchmark considers three classes for
evaluation: cars, pedestrians and cyclists with 28,742, 4,487,
and 1,627 training labels respectively. In this work, we focus
on the first two classes respectively.

TABLE II: Dataset statistics of standard Traffic Sign Detection
Benchmarks

Training Testing
GTSDB [15] 600 300
BTSDB [16] 5905 3101
STSDB [17] 4000 500

B. Traffic Sign detection Benchmark

In addition we also use three standard TSDR benchmarks
where the problem detection and classification is harder than
KITTI. Table II shows each of the standard benchmark datasets
used in this work in terms of their training and testing split
sizes. As we can see, compared to GTSDB, BTSDB and
STSDB have more annotated frames.

In this work, we have selected 39 unique traffic sign classes
as shown in Table III, owing to their widespread usage across
the European countries. For our experiments, we use a total
of 32 classes of traffic signs from GTSDB, 15 and 27 classes
from STSDB and BTSDB. The more in depth description of
the class selection could be found in [26].

C. Road Damage Detection Benchmark

With construction applications in target we evaluate on
Road Damage Detection Benchmark (RDDB). RDDB dataset
used for this work consists of images recorded using mobile
smartphone previously by [18] and was made available as part
of the 2018 IEEE Big Data Cup. The images recorded are
made in a zenith angle taken from inside of the vehicle on
looking the road ahead. The dataset statistics is as shown in
Table I. The dataset consists of road damage images collected
across 7 municipalities in Japan with 8 road damage categories
[18]. While the published work suggests collection of the
dataset with more than 9K frames, the released dataset consists
of total of 7.6K images with 5787 train images and 1813
test images. Since the released dataset doesn’t provide any
validation split, during initial model development, validation
and parameter search stages we further divide the dataset into
two splits namely Set-Original a.k.a the original dataset and
Set-Modified involving a training set of 3974, validation set of
1813 and test set of 1813 images. More details on the dataset
could be found in [18].

D. PASCAL VOC Benchmark

With general domain in target, we also experiment on PAS-
CAL VOC dataset. The Pascal Visual Object Classes (VOC)
Challenge has been an annual event since 2006. The challenge
consists of two components: (i) a publicly available dataset of
images obtained from the Flickr web site (2013), together with
ground truth annotation and standardized evaluation software;
and (ii) an annual competition and workshop. There are three
principal challenges: classification does the image contain any
instances of a particular object class? (where object classes
include cars, people, dogs, etc.), detection where are the
instances of a particular object class in the image (if any)?,
and segmentation to which class does each pixel belong?. In
addition, there are two subsidiary challenges (tasters): action

TABLE III: Dataset statistics of Road Damage Detection
Benchmark used in this work. All the results reported are on
the Modified set.

Training Validation Testing
Set-Original 5787 0 1813
Set-Modified 3974 1813 1813

Fig. 1: Architecture of SSD [11]

classification what action is being performed by an indicated
person in this image? (where actions include jumping, phon-
ing, riding a bike, etc.) and person layout where are the
head, hands and feet of people in this image?. The challenges
are issued with deadlines each year, and a workshop held
to compare and discuss that years results and methods. We
use the detection tasks dataset of the year 2012 and 2007 as
these contain the diverse set of images when put together.
The object detection estimation dataset in particular consists
of 16000 training images and 5000 test images, compris-
ing 90000-labelled objects spanning across twenty different
classes including car pedestrian, bike etc. All images are color
and saved as jpg.

III. SINGLE SHOT MULTIBOX DETECTOR

SSD [11] (shown in Figure 1) predicts object bounding
boxes by predicting the offsets and class scores relative to a
set of predefined default boxes of different scales1 and aspect
ratios (as shown in Figure 2). The scale of the default box
varies across multiple convolution layers of the SSD network.
When the feature layer used is the conv4 3 (first one to have
a classifier layer in Figure 1), the sizes of the default boxes,
and hence the predicted objects, will be smaller.

This is also demonstrated in Figure 2, where it can be seen
that the 88 feature map can (only) predict smaller objects cf.

Fig. 2: Detection at multiple scales and aspect ratios using
feature maps of different sizes and default boxes of different
aspect ratios [11]

the 44 feature map. Thus, default boxes in the earlier layers
have smaller scales than the ones further down in the network.
Another related aspect is that the earlier layers will have larger
number of default boxes; this can also be seen in 2, where
the number of default boxes in 88 layer will be 82/42 = 4
times more than that in the 44 layer, with other parameters
same for both. Hence changing the distribution of the scales
of default boxes changes the size of the objects, that we are
effectively making SSD find, as well as the number of potential
locations for the objects. While the default configuration of
SSD default boxes performs reasonably well out of the box,
it should be adjusted according to the specific statistics of the
current task, i.e. as an extreme example, if the objects that
we are interested in always appear in large sizes, then having
small default boxes is not only inefficient but might introduce
unwanted false positives as well.

IV. MULTISTAGE IMPROVEMENT

In this section, we present the improvements made to SSD.
More specifically in section IV-A, IV-B and IV-C we present
our approaches for improving Performance, Memory and time
efficiency. Please note that each of these improvements could
be combined in multiple ways and need not be always used
together.

A. Improving Performance Efficiency by Scale Selection

As the first contribution, we focus on improving perfor-
mance efficiency by improving scale selection. In an SSD
network with L convolutional layers contributing to detection,
let

S = S1,SL (1)

denote the scale configuration of default boxes with S1 <
S2 < ... < SL. By assuming that the scale of default boxes
increase linearly from one layer to next, scale configuration S
can be

S =

{
si|si = smin +

i− 1

L− 1
(Smax − Smin)1,, L

}
(2)

thus reducing the number of parameters to be optimized to
two. Given a training set of images I annotated with object
bounding boxes, the optimal scale configuration potentially
depends on the weighted combination of two factors, and could
be found by solving the following optimization problem.

S∗ = argmaxS

{
αRecall

θ
(GI , DS) + βPrecision(S))

}
(3)

where GI is the set of all ground-truth bounding boxes in I,
DS is the set of anchor boxes from all L layers of the network
with scale configuration S. Recallθ(GI , DS), is defined as
the fraction of boxes in GI with IoU overlap greater than
threshold θ with at least one of the boxes in DS . α and β
are parameters used for the trade-off between precision and
recall. Precision(S) is the average-precision performance of

the network trained with the default anchor box configuration
S on a validation set I . We vary the values of Smin, Smax in
range of [0.1 0.8] respectively.

With a representative validation set, we would expect only
the Precision(S) to be important, akin to cross-validation,
but doing that is costly as it requires separate training of
the network for each element of S. Here, we thus use the
Recallθ(GI , DS) to do an aggressive pruning of the scale
ranges and then finally select only a small number of scale
ranges to do the validation experiments requiring full re-
training of the network. The first stage thus requires calculating
the different default boxes generated as a result of the different
scale ranges, which is substantially cheaper in computation

B. Compression using Multilayer Pruning

As a second contribution, we focus on improving memory
efficiency of SSD using compression with limited compromise
on accuracy. The core of our compression framework is based
on the principle: “Evaluate the importance of the filters and
remove the unimportant ones” in line with previous works
[28].

Let Il and Wl denote the input tensor and parameters
of l-th convolutional layer. Here Il ∈ Rcl−1×hl×wl has
cl−1 channels, hl rows and wl columns. The weight tensor
Wl ∈ Rcl×cl−1×kl×kl is a set of cl filters of cl−1 × kl × kl
size each. This convolutional layer produces the output tensor
Ol ∈ Rcl×hl+1×wl+1 , which is a set of cl feature maps.

Our goal is to remove the unimportant filters in Wl. Let
c′l × cl−1 × kl × kl be the new size of Wl, where c′l is the
number of remaining filters after pruning of the unimportant
ones. Since the number of filters is modified in layer l, the
size of output tensor Ol and equivalently the size of input
tensor of next layer Il+1 also reduces from cl × hl+1 × wl+1

to c′l × hl+1 × wl+1. Hence, the corresponding weights in
Wl+1 also need to be removed, which would in turn re-
duce the size of Wl+1 from cl+1 × cl × kl+1 × kl+1 to
cl+1 × c′l × kl+1 × kl+1.

In our multilayer pruning framework, we prune architecture
such as SSD in multiple phases. In each phase, we target a
different set of consecutive layers. First, we introduce sparsity
in these layers and prune them aggressively in a single shot.
Then, we recover the performance of the model by fine-tuning
it. Unlike previous approaches [30] where pruning is done
iterative on full network or layerwise, our method prunes a
set of consecutive convolution layers at a time.

Figure 3 shows a schematic of our filter pruning strategy.
Given a pre-trained model with parameters Θ and a set of
consecutive layers L to be pruned. The entire framework
executes in the following steps.

1) Sparsity induction: In the first step, trained the SSD
model with loss-function with L1-norm resulting in the
sparse model ΘL1. Next, we set all the weights in L
with an absolute value smaller than a threshold to zero
resulting in the model Θth

L1. The value of the threshold
is chosen based on the performance of Θth

L1 on the
validation set. Unlike previous approaches [?] that select

Fig. 3: Illustration of filter selection and pruning of convo-
lutional filters in our pruning framework. After introducing
sparsity in network weights by training with L1 regularization
and thresholding, we examine the filter weights Wl and Wl+1

of two consecutive convolutional layers l and l+1 respectively.
Based on sparsity in these weights, we select the filters in Wl

to be pruned. Note that corresponding weights in Wl+1 also
get removed. Removing these weights reduces the number of
output channels in l-th layer from cl to c′l.

layer-wise thresholds, we use a single global threshold
for the whole layer set L. This allows us to prune
filters in L in a single step. We explain this in detail
in Section IV-B1.

2) Filter selection: To evaluate the importance of a filter
in layer l ∈ L, we use filter sparsity statistics of layer l
and l+1 in model Θth

L1. Unlike previous approaches that
use data-driven methods to figure out the importance,
we use only weight statistics. The key idea here is to
remove all the filters in l that have a large fraction of
zero weights in them as well as those filters in l that have
a large fraction of zero weights corresponding to them
in the filters of the following layer l + 1 as illustrated
in Figure 3. At the end of this step, we obtain a list of
filters in layer l that are deemed as removable from the
model. We repeat step 2 for each layer in L. A more
detailed explanation is presented in Section IV-B2.

3) Pruning: Filters selected in step 2 for layer l and
corresponding weights in layer l+ 1 associated with the
output of these filters are removed from model ΘL1.
This is repeated for each layer in L sequentially.

4) Retraining: Finally, we retrain the pruned network
using the original loss (without L1 regularization) to
recover the performance drop due to sparsity induction
in step 1.

1) Sparsity Induction: Let D =
{(x0, y0), (x1, y2), . . . , (xn, yn)} be the training set, where

xi and yi are input and target label. The parameters Θ of the
original model are optimized to minimize the cost CD(Θ).

Θ = argmin{CD(Θ)} (4)

The form of this cost function depends on the task to be solved
by the original network. For instance, we use multibox loss
function for SSD.

Let L = {lstart, . . . , lend} be the set of consecutive layers to
be pruned. In order to induce sparsity in parameters of layers
in L, we add L1-norm of parameters of these layers to the
original cost function and train the network initialised with Θ.

ΘL1 = argmin

{
CD(Θ) + α

lend∑
l=lstart

||Wl||1

}
(5)

We choose the regularisation factor α such that the perfor-
mance of the model with new parameters on a validation set
Dval is close to the original performance, i.e. PDval(ΘL1) ≥
PDval(Θ) − ε1. Here, ε1 is the tolerance constant that allows
us to control the degree of sparsity in the parameters of layers
in L. PDval(Θ) is the performance (eg. accuracy, AP etc.) of
model with parameters Θ on the validation set Dval.

After obtaining ΘL1, we set all the weights in L with
absolute values smaller than a threshold t to zero. This gives
us the parameters Θth

L1. We search for optimal t in a range
proportional to standard deviation of weights in L, such that
PDval(Θ

th
L1) ≥ PDval(ΘL1) − ε2. The constant ε2 provides us

the additional control on the number of zero weights in L. At
this point, our network parameters are ready for filter pruning
in layers in L, which is described in next section.

2) Filter pruning: In this step, we determine filter impor-
tance corresponding to layer l ∈ L . This is executed by
examining sparsity statistics of Wl and Wl+1 in Θth

L1. Let
Fi ∈ Rcl−1×kl×kl be the i-th of cl filters in Wl. Note that in the
next layer, the output feature map of filter Fi is connected to
a slice of tensor Wl+1 of size cl+1 × 1× kl+1 × kl+1, we call
this slice of weights Gi. Essentially, our filter pruning strategy
is to remove the i-th filter if either one of the tensors Fi and
Gi has a very large fraction of zero weights (see Figure 3). We
implement this strategy using three thresholds sF , s′F and sG
with sF > s′F . For each i ∈ {1, . . . , cl}, we evaluate following
conditions and remove the i-th if atleast one of them holds
true:

1) sparsity statistics in Fi is higher than sF
2) sparsity statistics in Fi is higher than s′F and sparsity

statistics in Gi is higher than sG.
Intuitively, the first condition selects the filters that have

a very high level of sparsity (> sF). These filters can be
safely removed because their output activation maps are very
weak. The second condition further selects those filters whose
output activations are stronger than those selected by the first
condition (sF > sparsity level > s′F) but have an overall low
contribution because of high sparsity in the weights connected
to them in the next layer (sparsity level > sG). Our method
for computing sparsity statistics is unlike previous works [?]
where the method is data-driven and measures sparsity on

Algorithm 1 Algorithm for filter pruning

0: Inputs: Parameters of network after sparsity induction, ΘL1

and Θth
L1; set of layers to be pruned L.

0: Output: : New compressed model Mc with weights Θc.
0: filterindex = empty-list();
0: Θc = ΘL1

0: for layer l in L do
0: for filter i in {1, . . . , cl} do
0: Extract Fi and Gi from Θth

L

0: splevelF = Sparsity-level(Fi);
0: splevelG = Sparsity-level(Gi);
0: if splevelF >= s′F then
0: if splevelF >= sF then
0: filterindex.add(i)
0: else
0: if splevelG >= sG then
0: filterindex.add(i)
0: end if
0: end if
0: end if
0: end for
0: for filter i in filterindex do
0: Θc = Remove Fi from Wl, Gi from Wl+1 in Θc

0: Θth
L = Remove Fi from Wl, Gi from Wl+1 in Θth

L

0: end for
0: end for
0: Mc = Redefine model with the remaining parameters Θc

0: Initialize Mc with Θc

0: Return Model Mc and Θc =0

layers activation (e.g. output of ReLU) rather than its filter
weights. To compute the sparsity level, we use the concept of
zero row. A row in a filter kl× kl is considered as a zero row
(size 1× kl) if all elements in the row are zero. Sparsity level
is simply the percentage of zero rows in a filter.

Sparsity level(Fi) =
Number of zero rows

cl−1 × kl

Sparsity level(Gi) =
Number of zero rows

cl+1 × kl+1

Let Θc be the parameters of the network after filter pruning.
We empirically found that taking the values of parameters
in Θc from ΘL1 rather than from Θth

L1 results in improved
performance. The reason for improved performance is due
to the restoration of values of zero weights that did not get
pruned. Θth

L1 only serve as a guide for the selection of filters
to be pruned. Algorithm 1 describes the full procedure of filter
pruning in detail.

Finally, we retrain the pruned network without L1 reg-
ularization to restore the performance drop due to sparsity
induction.

C. Improving Time Efficiency through Semantic Retrieval

As a final contribution, we aimed at optimizing the test time
of a trained model by actively pruning the search area. The

Fig. 4: Semantic Retrieval using Siamese Neural Network and
Nearest Neighbor [27]

pruning stategy was based on retrieving images with similar
semantic appearances and using their bounding boxes to prune
the search area in the current image. To do this effectively, we
proposed to use a small and fast CNN network to encode a set
of dataset images offline. At test time, two operations need to
be done, (i) the test image has to be encoded with the same
fast CNN and (ii) the nearest neighbors are then retrieved in
that embedding space. The bounding boxes from the retrieved
images are then overlayed on the current image and are used
to prune the search area by running detection only on the
covering rectangle, and not the entire image. By doing so, we
hoped to decrease the run time of the detection, while possibly
trading off some performance.

However, we found that a generic similarity (based on an
ImageNet pre-trained CNN) does not work effectively as it
is overly biased by non-relevant artifacts in the image. In
particular with VGG Fast CNN3 [27], pre-trained on the Im-
ageNet dataset and compared using cosine similarity between
l2 normalized last fc activations.

To avoid such interference and obtain retrievals which
reflect the semantics based on likely objects locations in the
images, we then proposed to train Siamese network to learn the
embedding. These embeddings would then be used instead of
the embeddings obtained from ImageNet pretrained CNN. This
can be seen as learning conditional priors, on object locations,
from the training data. For each test image, similar images
retrieved from the training data based on such embeddings
would be expected to have similar object locations. The
embeddings for the training images are computed offline and
stored and only needs to be calculated for the test image at
run time. The top retrieved images are then used to infer the
possible object locations in the current image.

To train the Siamese network, we use a pairwise loss
formulation similar to [29]. The method requires two sets of
pairs of images, one where the pair (xj , xj) are similar, and
have corresponding yij = +1, and the other where the pairs
are dissimilar with yij= 1. The similarity and dissimilarity in
our case is defined by the bounding boxes (of actual objects,
of a certain class, present in the image) overlap the images
with high bounding box overlap are considered similar, while
those for which bounding boxes do not overlap sufficiently
are dissimilar. As shown in figure 4 when a new test image
comes, we project its feature using siamese network and do
Nearest Neighbor (NNs) with the training images. We retrieve
k NNs, using Eclidean distance after projection, and use their
ground truth bounding boxes to have a pruned search area as

TABLE IV: Comparison of Performances across experiments.
The value signifies mAP measure

PASCAL
VOC KITTI GTSDB STSDB BTSDB RDDB

SSD 79.8 53.9 76.8 71.34 85.5 48.16
SCR 77.5 68.5 82.44 88.4 91.6 49.13
CC 77.94 65.2 89.5 64.2 80.4 37.2

CC SCR 77.94 65.2 89.5 63.7 81.4 38.4

TABLE V: Comparison of Speed across experiments. The
results signifies speed in FPS measured using TitanX GPU
using Pytorch Framework.

PASCAL
VOC KITTI GTSDB STSDB BTSDB RDDB

SSD 19 19 19 19 19 19
SCR 22 22 22 22 22 22
CC 142 142 142 142 142 142

CC SCR 140 140 140 140 140 140

the minimum enclosing rectangle for all those bounding boxes,
with an extra padding of 10 pixels for some context.

D. Experiments and Results

In this section, we present results for each of the im-
provements made to SSD across all the previously mentioned
benchmark datasets. Unless specified explicitly all the results
report are for SSD512. More specifically in this section, we
present results of accuracy in terms of mean average precision
(mAP), memory consumption in mega bytes (MB) and speed
in frames per second (FPS) tested on TitanX GPU in Tables
IV,V and VI for SSD with Scale Selection with Semantic
Retrieval (SCR), Compression (CC), Compression with
Scale Selection and Semantic Retrieval (CC SCR) respec-
tively. Please note that the results in table V corresponds to 16
Nearest Neighbors fetched during test time, the corresponding
mAP and total memory size are mentioned in table IV and
VI. As such there is 1-1 correspondence between the results
of tables IV,V and VI.

E. Discussion on Results

In previous sections we described the improvements devel-
oped for SSD to improve its performance and speed at the
same time reduce memory consumption which is visible from
Tables IV,V and VI. In this section, we will describe results
and some ablation study done on the said work. Considering
the results in Tables IV,V and VI we present analysis and
ablation study considering GTSDB dataset, which showed
improvement in all aspects of performance, speed and memory.

1) Analysis of Performance Improvement: Figure 5 shows
the histogram of scale of the bounding boxes in GTSDB

TABLE VI: Comparison of Model size across experiments.The
value signifies size of model in MB.

PASCAL
VOC KITTI GTSDB STSDB BTSDB RDDB

SSD 108 108 108 108 108 108
SCR 113 113 113 113 113 113
CC 22 22 3.8 3.8 3.8 70

CC SCR 20.7 20.7 8.8 8.8 8.8 78.8

TABLE VII: Performance and average scale of default boxes
across various layers of SSD with different selected scales. *
indicates scale selected by our scale selection approach.

Default Scale range of Boxes → 10-80 20-75 25-90 5-150*
Layer Scales of default boxes (in px)

conv4 3 33.0 41.2 22.0 10.2
fc7 65.7 77.9 59.6 41.2

conv6 2 104.5 114.6 97.2 85.2
conv7 2 140.2 151.2 134.7 129.2
conv8 2 176.0 187.9 172.3 173.2
pool16 247.5 261.2 247.5 261.2

Results (mAP) 78.5 76.8 80.2 82.44

dataset. We observe that even in a dataset with only three
classes of objects, i.e. Mandatory, Prohibitory and Danger, the
distribution of the object scales vary while there are many
objects with scales in range of 20 to 80px, there are not many
in the higher scales. Thus in practice, for optimal performance,
we should aim for a distribution of default boxes which is
tuned wrt. the actual distribution in out target set of images.
Such distribution could be potentially tuned to the object class,
at the expense of linear scaling the complexity (as it will
require as many different models as there are classes).

Table VII shows the empirical comparison of these different
scale settings. First, the table shows the scale of the the default
boxes across layers. As we can see that it drops very quickly
from the earlier layers to later, as evident from conv4 3 to
conv7 2. The default box scale range parametrization in SSD
controls the sizes of the default boxes used at each such
layer (which has a classifier connection) thereby impacting
the result. Also the table shows the results for each of the
setting including the result obtained on scale selected by
our approach. As we can see with broader scale selection
of the default boxes, the results does improve signficantly.
We see similar results across the datasets of KITTI, BTSDB
and STSDB, where with scale selection the results improve
drastically. However one would argue that from Table IV that
the result for other datasets namely PASCAL VOC and RDDB
are limited. Further in case of PASCAL VOC the results drop
and in case of RDDB the results improvement is approx 1%.
We conjecture this as an effect of the dataset where in case
of the PASCAL VOC, the dataset of train and test are random
images from flickr where the objects sizes vary significantly
across the test and train set leading to varying scale distribution
pattern that couldn’t be taken advantage of by our method.
Secondly in case of RDDB the results improvement is limited
mostly because of the problem of class overlap among the
damage types.

2) Analysis of reduction in Memory: SSD consists of a
large number of convolutional layers, where multiple convolu-
tional layers contribute to the detections at various scales. The
complex dependency of output detections on convolutional
layers makes it challenging to compress. Previous works,
only attempt to compress the base network of SSD. In our
experiments, we compress the full network including the
detection layers. However, we observed that compressing the
entire network together in a single step massively degrades

Fig. 5: Histogram of scale of the bounding boxes in TSDB
dataset, for GTSDB (blue) and STSDB (green) classes. Scale
is the geometric mean of the width and the height. [11]

Fig. 6: Number of non-zero parameters in SSD convolutional
layers before and after different phases of our sparsity induc-
tion method (GTSDB).

the performance. Therefore, we apply our multilayer pruning
strategy and target the network in chunks of layers in multiple
phases.

Settings: In all of our experiments, we use SSD with base
network VGG16. For pruning of SSD, we employ our method
in 4 phases where were select set of convolutions namely:
conv1 1 - conv4 3, conv4 3 - conv7, conv7 - conv8 2 and
conv8 2 - conv12 2. We also include the conv layers that
perform the localization and classification in these groups of
layers. Regularization constant α is chosen in such a way that
performance loss ε1 ∈ [2, 3]. Experimentally, we found that if
ε1 ≥ 5 then at a later stage we can not recover the performance
loss due to the pruning of the important connections. Recall
that ΘL1 and Θth

L1 denote the model parameters obtained after
applying regularization and global thresholding (with threshold
t) respectively. The threshold t is selected such that there is
a further performance drop of ε2 ∈ [5, 7] after thresholding.
Note that Θth

L1 is only used for selecting unimportant filters
while the actual filter pruning is done on the model with
parameters ΘL1. This allows us to afford a relatively high-
performance drop after thresholding and explains the high
value of ε2. Experimentally, we found that ε2 ≥ 10 results in
too much sparsity in Θth

L1 and consequently affects the filter
selection procedure by selecting important filters for pruning.
This results in an irrecoverable loss in performance.

We use grid search for selecting hyperparameters sF , s′F
and sG in the range [0.70, 0.99] and found sF = 0.9, s′F =
0.85 and sG = 0.95 to work best for ε1 and ε2 in the ranges

CONV Layers
SSD 512 1 1 1 2 2 1 2 2 3 1 3 2 3 3 4 1 4 2 4 3 5 1 5 2 5 3 6 7 8 1 8 2 9 1 9 2 10 1 10 2 11 1 11 2 12 1 12 2
original 64 64 128 128 256 256 256 512 512 512 512 512 512 1024 1024 256 512 128 256 128 256 128 256 128 256

pruned-det1 64 64 121 123 206 84 113 59 50 189

TABLE VIII: Layer-wise pruning results in SSD512 model on GTSDB dataset.

Model AP Size Total Parametersprohibitory mandatory danger mAP
SSD300-original 38.61 31.07 47.2 38.96 96.1MB 24.0M
SD512-original 88.67 76.32 82.34 82.44 98.7 MB 24.7M

SSD512-pruned-1det 97.95 83.82 86.83 89.53 3.8 MB (26X) 938.8K (3.8%)

TABLE IX: AP for each class with original SSD and pruned SSD models on GTSDB.

TABLE X: Speedup achieved by Semantic Retrieval for
GTSDB.

No of Nearest Neighbor, K 2 4 8 16 No Pruning
CNN forward pass time (ms) 0.93 0.93 0.93 0.93

Average prior retrieval time (ms) 0.65 0.67 0.77 0.92
Average SSD forward pass time (ms) 20.8 25.0 28.7 31.8 39.6

Total time (ms) 22.4 26.6 30.4 33.5 39.6
Speedup achieved 1.8x 1.5x 1.3x 1.2x

Speedup expected (theoretical) 2.7x 2.1x 1.7x 1.5x
mAP for GTSDB 70.3 71.4 80.2 81.4 82.44

mentioned above.
We initally trained both SSD300 and SSD512 on GTSDB

and obtained 38.96% and 82.44% mAP on test set respectively.
Due to lower results, in this paper we only used SSD512
for our compression experiments. Figure 6 shows the number
of non-zero parameters in convolutional layers after sparsity
induction in first two phases. We observed that most of the
parameters in layers after conv4 3 become zero (see Figure 6).
For instance, in conv7 only 3 out of 1M remain non-zero after
thresholding. This is expected as only the early layers in SSD
are responsible for detecting of smaller objects. We compress
the layers in the first phase and remove all layers after conv4 3
because of the extremely high sparsity. The resulting model
SSD512-pruned-1det which has only one detection layer is
26X smaller than the original model. Table VIII shows the
layer-wise pruning results. Table IX shows performance and
model size of original SSD and SSD512-pruned-1det.

However, in table VI we can see that while models of TSDB
are compressed at higher rate, unlike the case of PASCAL
VOC and KITTI data sets. We show one such example of
compressing SSD over PASCAL VOC dataset in Table XI.
This suggests that amount of compression of the model is
indeed data dependent, which in turn means that our methods
tries to model the max capacity of the neural network at that
compressed size.

3) Analysis of Improvement in Speed: Table X shows the
relative speed up achieved in case of GTSDB dataset. We
show the time consumption with respect to figure 4. As we
can see from table for V with addition of semantic retrieval
we increase the speed by additional 3 FPS across all our
experiments. Here we describe in the detail the results obtained
for GTSDB dataset inline with results from previous section.
As we can see from table X the number of nearest neighbors
is proportional to the mAP and inversely related to additional
speed gained by the detector. With more nearest neighbors
we achieve the better results, at the same time it reduces

the FPS owing to more time spent in retrieval of neighbors.
However we can see that the result is not as expected through
our theoretical calculation. We believe this mostly has to do
with the implementation of the solution and with optimized
implementation we expect to achieve similar results. While
one would argue that compressed model alone would suffice
for speed up as well as memory reduction. We believe the
Semantic Retrieval based pruning would be useful in area
where the higher performance of the system is critical, which
cannot be obtained via compressed model.

F. Conclusion

In this paper, we have proposed a multistage improvement to
SSD to improve its speed, memory efficienct and performance.
To do this we introduces Scale selection, Semantic Retrieval
and multilayer pruning. We present various results across
multiple benchmarks namely PASCAL VOC, TSDB, RDDB
and KITTI in which we found the improvements to be fruitful.
Further we achieved a significant amount of compression
and performance improvements. At the same time Semantic
Retrieval Indeed helped us in gained the last ounce of speed
left in the SSD. In the future, we would be interested in
exploring this approach for other object detection models and
architecture variants of SSD.

REFERENCES

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In NIPS, 2012.

[2] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going deeper with convolutions. In CVPR, 2015.

[3] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for largescale image recognition. In ICLR, 2015.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In CVPR, 2016.

[5] Girshick, Ross B.. Fast R-CNN. 2015 IEEE International Conference
on Computer Vision (ICCV) (2015): 1440-1448.

[6] Ren, Shaoqing, Kaiming He, Ross B. Girshick and Jian Sun. Faster
R-CNN: Towards Real-Time Object Detection with Region Proposal
Networks. CoRR abs/1506.01497 (2015): n. pag.

[7] Ren, Shaoqing, Kaiming He, Ross B. Girshick and Jian Sun. Faster
R-CNN: Towards Real-Time Object Detection with Region Proposal
Networks. CoRR abs/1506.01497 (2015): n. pag

[8] Dai, Jifeng, Yi Li, Kaiming He and Jian Sun. R-FCN: Object Detection
via Region-based Fully Convolutional Networks. NIPS (2016).

[9] Liu, Wei, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
E. Reed, Cheng-Yang Fu and Alexander C. Berg. SSD: Single Shot
MultiBox Detector. ECCV (2016).

[10] Fu, Cheng-Yang, Wei Liu, Ananth Ranga, Ambrish Tyagi and Alexan-
der C. Berg. DSSD : Deconvolutional Single Shot Detector. CoRR
abs/1701.06659 (2017): n. pag.

SSD300 on PASCAL VOC SSD512 on PASCAL VOC
original pruned-3det pruned-6det original pruned-4det pruned-7det

Input Size 300X300X3 300X300X3 300X300X3 512X512X3 512X512X3 512X512X3

Layers

CONV1 1 3X3 CONV, 64 3X3 CONV, 64 3X3 CONV, 64 3X3 CONV, 64 3X3 CONV, 64 3X3 CONV, 64
CONV1 2 3X3 CONV, 64 3X3 CONV, 56 3X3 CONV, 56 3X3 CONV, 64 3X3 CONV, 61 3X3 CONV, 61
CONV2 1 3X3 CONV, 128 3X3 CONV, 107 3X3 CONV, 107 3X3 CONV, 128 3X3 CONV, 119 3X3 CONV, 119
CONV2 2 3X3 CONV, 128 3X3 CONV, 121 3X3 CONV, 121 3X3 CONV, 128 3X3 CONV, 122 3X3 CONV, 122
CONV3 1 3X3 CONV, 256 3X3 CONV, 193 3X3 CONV, 193 3X3 CONV, 256 3X3 CONV, 215 3X3 CONV, 215
CONV3 2 3X3 CONV, 256 3X3 CONV, 158 3X3 CONV, 158 3X3 CONV, 256 3X3 CONV, 160 3X3 CONV, 160
CONV3 3 3X3 CONV, 256 3X3 CONV, 195 3X3 CONV, 195 3X3 CONV, 256 3X3 CONV, 187 3X3 CONV, 187
CONV4 1 3X3 CONV, 512 3X3 CONV, 263 3X3 CONV, 263 3X3 CONV, 512 3X3 CONV, 252 3X3 CONV, 252
CONV4 2 3X3 CONV, 512 3X3 CONV, 181 3X3 CONV, 181 3X3 CONV, 512 3X3 CONV, 172 3X3 CONV, 172

CONV4 3 D1 3X3 CONV, 512 3X3 CONV, 331 3X3 CONV, 331 3X3 CONV, 512 3X3 CONV, 313 3X3 CONV, 313
CONV5 1 3X3 CONV, 512 3X3 CONV, 98 3X3 CONV, 98 3X3 CONV, 512 3X3 CONV, 170 3X3 CONV, 170
CONV5 2 3X3 CONV, 512 3X3 CONV, 108 3X3 CONV, 108 3X3 CONV, 512 3X3 CONV, 134 3X3 CONV, 134
CONV5 3 3X3 CONV, 512 3X3 CONV, 78 3X3 CONV, 78 3X3 CONV, 512 3X3 CONV, 117 3X3 CONV, 117

CONV6 3X3 CONV, 1024 3X3 CONV, 146 3X3 CONV, 146 3X3 CONV, 1024 3X3 CONV, 305 3X3 CONV, 305
CONV7 D2 1X1 CONV, 1024 1X1 CONV, 106 1X1 CONV, 106 1X1 CONV, 1024 1X1 CONV, 332 1X1 CONV, 332
CONV8 1 1X1 CONV, 256 1X1 CONV, 34 1X1 CONV, 34 1X1 CONV, 256 1X1 CONV, 122 1X1 CONV, 122

CONV8 2 D3 3X3 CONV, 512 3X3 CONV, 198 3X3 CONV, 198 3X3 CONV, 512 3X3 CONV, 133 3X3 CONV, 133
CONV9 1 1X1 CONV, 128 1X1 CONV, 12 1X1 CONV, 128 1X1 CONV, 89 1X1 CONV, 89

CONV9 2 D4 3X3 CONV, 256 3X3 CONV, 36 3X3 CONV, 256 3X3 CONV, 168 3X3 CONV, 168
CONV10 1 1X1 CONV, 128 1X1 CONV, 22 1X1 CONV, 128 1X1 CONV, 81

CONV10 2 D5 3X3 CONV, 256 3X3 CONV, 41 3X3 CONV, 256 3X3 CONV, 92
CONV11 1 1X1 CONV, 128 1X1 CONV, 22 1X1 CONV, 128 1X1 CONV, 40

CONV11 2 D6 3X3 CONV, 256 3X3 CONV, 66 3X3 CONV, 256 3X3 CONV, 84
CONV12 1 1X1 CONV, 128 1X1 CONV, 40

CONV12 2 D7 4X4 CONV, 256 4X4 CONV, 80

Total Parameters 26.3M 3.7M (14.1%) 3.9M (14.8%) 27.2M 5.1M (18.8%) 5.5M (20.2%)

Model Size 105.2 MB 15 MB (7X) 15.7 MB (6.7X) 108.8 MB 20.3 MB (5.4X) 22 MB (4.9X)

Mean AP 77.16 72.15 75.07 79.52 75.59 77.94

TABLE XI: Layer-wise pruning results in SSD300 and SSD512 models on PASCAL VOC dataset. CONVX DN denotes the
N-th layer that is connected to detection layer (conf and loc layer).

[11] Redmon, Joseph and Ali Farhadi. YOLO9000: Better, Faster, Stronger.
2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2017): 6517-6525.

[12] Lin, Tsung-Yi, Priya Goyal, Ross B. Girshick, Kaiming He and Piotr
Dollr. Focal Loss for Dense Object Detection. 2017 IEEE International
Conference on Computer Vision (ICCV) (2017): 2999-3007.

[13] He, Kaiming, Georgia Gkioxari, Piotr Dollr and Ross B. Girshick.
Mask R-CNN. 2017 IEEE International Conference on Computer Vision
(ICCV) (2017): 2980-2988.

[14] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for
autonomous driving? the kitti vision benchmark suite. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2012.

[15] Houben, Sebastian, Johannes Stallkamp, Jan Salmen, Marc Schlipsing
and Christian Igel. ”Detection of traffic signs in real-world images: The
German traffic sign detection benchmark.” The 2013 International Joint
Conference on Neural Networks (IJCNN) (2013): 1-8.

[16] Timofte, Radu, Karel Zimmermann and Luc Van Gool. ”Multi-view
traffic sign detection, recognition, and 3D localisation.” 2009 Workshop
on Applications of Computer Vision (WACV) (2009): 1-8.

[17] Larsson, Fredrik and Michael Felsberg. ”Using Fourier Descriptors and
Spatial Models for Traffic Sign Recognition.” SCIA (2011).

[18] Maeda, Hiroya, Yoshihide Sekimoto, Toshikazu Seto, Takehiro
Kashiyama and Hiroshi Omata. Road Damage Detection Using Deep
Neural Networks with Images Captured Through a Smartphone. CoRR
abs/1801.09454 (2018).

[19] M. Everingham, S. M. A. Eslami, L. V. Gool, C. K. I. Williams, J. M.
Winn, and A. Zisserman. The pascal visual object classes challenge:
A retrospective. International Journal of Computer Vision, 111:98136,
2014.

[20] Andrea Vedaldi, Varun Gulshan, Manik Varma, and Andrew Zisserman.
Multiple kernels for object detection. In CVPR, 2009.

[21] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for
human detection. In CVPR, 2005.

[22] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva
Ramanan. Object detection with discriminatively trained part-based
models. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 32(9):16271645, 2010.

[23] Xie, X., Han, X., Liao, Q., & Shi, G. (2017). Visualization and Pruning
of SSD with the base network VGG16. ICDLT ’17.

[24] Chen, G., Choi, W., Yu, X., Han, T.X., Chandraker, M.K. Learning
Efficient Object Detection Models with Knowledge Distillation. NIPS
2017

[25] Anisimov, D., Khanova, T. (2017). Towards lightweight convolutional
neural networks for object detection. 2017 14th IEEE International

Conference on Advanced Video and Signal Based Surveillance (AVSS),
1-8.

[26] Manikandan R, Traffic Sign Detection - How well does SSD fare up?
An Empirical Study, 47th Annual IEEE AIPR, Ubiquitous Imaging
,Washington, D.C., USA, 2018

[27] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of
the devil in the details: Delving deep into convolutional nets. In British
Machine Vision Conference (BMVC), 2014.

[28] Luo, J., Wu, J., Lin, W. (2017). ThiNet: A Filter Level Pruning Method
for Deep Neural Network Compression. 2017 IEEE International Con-
ference on Computer Vision (ICCV), 5068-5076.

[29] Binod Bhattarai, Gaurav Sharma, and Frederic Jurie. CP-mtML: Coupled
projection multi-task metric learning for large scale face retrieval. In
CVPR, 2016.

[30] Han, S., Mao, H., Dally, W.J. (2015). Deep Compression: Compressing
Deep Neural Network with Pruning, Trained Quantization and Huffman
Coding. CoRR, abs/1510.00149.

